#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Any, Dict, List, Optional, Tuple
import torch
[docs]def get_torch_test_data(
dtype: torch.dtype = torch.float,
cuda: bool = False,
constant_noise: bool = True,
task_features: Optional[List[int]] = None,
offset: float = 0.0,
) -> Tuple[
List[torch.Tensor],
List[torch.Tensor],
List[torch.Tensor],
List[Tuple[float, float]],
List[int],
List[str],
List[str],
]:
tkwargs: Dict[str, Any] = {
"device": torch.device("cuda" if cuda else "cpu"),
"dtype": dtype,
}
Xs = [
torch.tensor(
[
[1.0 + offset, 2.0 + offset, 3.0 + offset],
[2.0 + offset, 3.0 + offset, 4.0 + offset],
],
**tkwargs,
)
]
Ys = [torch.tensor([[3.0 + offset], [4.0 + offset]], **tkwargs)]
Yvars = [torch.tensor([[0.0 + offset], [2.0 + offset]], **tkwargs)]
if constant_noise:
Yvars[0].fill_(1.0)
bounds = [
(0.0 + offset, 1.0 + offset),
(1.0 + offset, 4.0 + offset),
(2.0 + offset, 5.0 + offset),
]
feature_names = ["x1", "x2", "x3"]
task_features = [] if task_features is None else task_features
metric_names = ["y"]
return Xs, Ys, Yvars, bounds, task_features, feature_names, metric_names