Source code for ax.plot.marginal_effects
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, List
import pandas as pd
import plotly.graph_objs as go
from ax.modelbridge.base import ModelBridge
from ax.plot.base import AxPlotConfig, AxPlotTypes, DECIMALS
from ax.plot.helper import get_plot_data
from ax.utils.stats.statstools import marginal_effects
from plotly import subplots
[docs]def plot_marginal_effects(model: ModelBridge, metric: str) -> AxPlotConfig:
"""
Calculates and plots the marginal effects -- the effect of changing one
factor away from the randomized distribution of the experiment and fixing it
at a particular level.
Args:
model: Model to use for estimating effects
metric: The metric for which to plot marginal effects.
Returns:
AxPlotConfig of the marginal effects
"""
plot_data, _, _ = get_plot_data(model, {}, {metric})
arm_dfs = []
for arm in plot_data.in_sample.values():
arm_df = pd.DataFrame(arm.parameters, index=[arm.name])
arm_df["mean"] = arm.y_hat[metric]
arm_df["sem"] = arm.se_hat[metric]
arm_dfs.append(arm_df)
effect_table = marginal_effects(pd.concat(arm_dfs, axis=0))
varnames = effect_table["Name"].unique()
# pyre-fixme[33]: Given annotation cannot contain `Any`.
data: List[Any] = []
for varname in varnames:
var_df = effect_table[effect_table["Name"] == varname]
data += [
go.Bar(
x=var_df["Level"],
y=var_df["Beta"],
error_y={"type": "data", "array": var_df["SE"]},
name=varname,
)
]
fig = subplots.make_subplots(
cols=len(varnames),
rows=1,
subplot_titles=list(varnames),
print_grid=False,
shared_yaxes=True,
)
for idx, item in enumerate(data):
fig.append_trace(item, 1, idx + 1) # pyre-ignore[16]
fig.layout.showlegend = False
# fig.layout.margin = go.layout.Margin(l=2, r=2)
fig.layout.title = "Marginal Effects by Factor"
fig.layout.yaxis = {
"title": "% higher than experiment average",
"hoverformat": ".{}f".format(DECIMALS),
}
return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC)