Source code for ax.service.utils.instantiation

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import enum
from dataclasses import dataclass
from typing import Tuple, Dict, List, Optional, Union, cast

import numpy as np
from ax.core.arm import Arm
from ax.core.data import Data
from ax.core.experiment import DataType, Experiment, DEFAULT_OBJECTIVE_NAME
from ax.core.map_data import MapData
from ax.core.map_metric import MapMetric
from ax.core.metric import Metric
from ax.core.objective import Objective, MultiObjective
from ax.core.optimization_config import (
    ObjectiveThreshold,
    OptimizationConfig,
    MultiObjectiveOptimizationConfig,
)
from ax.core.outcome_constraint import OutcomeConstraint
from ax.core.parameter import (
    PARAMETER_PYTHON_TYPE_MAP,
    ChoiceParameter,
    FixedParameter,
    Parameter,
    ParameterType,
    RangeParameter,
    TParameterType,
)
from ax.core.parameter_constraint import OrderConstraint, ParameterConstraint
from ax.core.search_space import SearchSpace, HierarchicalSearchSpace
from ax.core.types import (
    ComparisonOp,
    TEvaluationOutcome,
    TMapTrialEvaluation,
    TParameterization,
    TParamValue,
    TTrialEvaluation,
)
from ax.exceptions.core import UnsupportedError
from ax.utils.common.constants import Keys
from ax.utils.common.logger import get_logger
from ax.utils.common.typeutils import (
    checked_cast,
    checked_cast_to_tuple,
    checked_cast_optional,
    not_none,
    numpy_type_to_python_type,
)

logger = get_logger(__name__)


"""Utilities for RESTful-like instantiation of Ax classes needed in AxClient."""


TParameterRepresentation = Dict[
    str, Union[TParamValue, List[TParamValue], Dict[str, List[str]]]
]
PARAM_CLASSES = ["range", "choice", "fixed"]
PARAM_TYPES = {"int": int, "float": float, "bool": bool, "str": str}
COMPARISON_OPS = {"<=": ComparisonOp.LEQ, ">=": ComparisonOp.GEQ}
EXPECTED_KEYS_IN_PARAM_REPR = {
    "name",
    "type",
    "values",
    "bounds",
    "value",
    "value_type",
    "log_scale",
    "target_value",
    "is_fidelity",
    "is_ordered",
    "is_task",
    "digits",
    "dependents",
}


[docs]class MetricObjective(enum.Enum): # pyre-fixme[20]: Argument `value` expected. MINIMIZE = enum.auto() # pyre-fixme[20]: Argument `value` expected. MAXIMIZE = enum.auto()
[docs]@dataclass class ObjectiveProperties: minimize: bool threshold: Optional[float] = None
[docs]class InstantiationBase: """ This is a lightweight stateless class that bundles together instantiation utils. It is used both on its own and as a mixin to AxClient, with the intent that these methods can be overridden by its subclasses for specific use cases. """ @staticmethod def _make_metric( name: str, lower_is_better: Optional[bool] = None, metric_class_override: Optional[type] = None, for_opt_config: bool = False, ) -> Metric: metric_class = ( metric_class_override if metric_class_override is not None else Metric ) return metric_class(name=name, lower_is_better=lower_is_better) @staticmethod def _get_parameter_type(python_type: TParameterType) -> ParameterType: for param_type, py_type in PARAMETER_PYTHON_TYPE_MAP.items(): if py_type is python_type: return param_type raise ValueError(f"No AE parameter type corresponding to {python_type}.") @classmethod def _to_parameter_type( cls, vals: List[TParamValue], typ: Optional[str], param_name: str, field_name: str, ) -> ParameterType: if typ is None: typ = type(not_none(vals[0])) parameter_type = cls._get_parameter_type(typ) # pyre-ignore[6] assert all(isinstance(x, typ) for x in vals), ( f"Values in `{field_name}` not of the same type and no " "`value_type` was explicitly specified; cannot infer " f"value type for parameter {param_name}." ) logger.info( f"Inferred value type of {parameter_type} for parameter {param_name}. " "If that is not the expected value type, you can explicity specify " "'value_type' ('int', 'float', 'bool' or 'str') in parameter dict." ) return parameter_type return cls._get_parameter_type(PARAM_TYPES[typ]) # pyre-ignore[6] @classmethod def _make_range_param( cls, name: str, representation: TParameterRepresentation, parameter_type: Optional[str], ) -> RangeParameter: assert "bounds" in representation, "Bounds are required for range parameters." bounds = representation["bounds"] assert isinstance(bounds, list) and len(bounds) == 2, ( f"Cannot parse parameter {name}: for range parameters, json representation " "should include a list of two values, lower and upper bounds of the range." ) return RangeParameter( name=name, parameter_type=cls._to_parameter_type( bounds, parameter_type, name, "bounds" ), lower=checked_cast_to_tuple((float, int), bounds[0]), upper=checked_cast_to_tuple((float, int), bounds[1]), log_scale=checked_cast(bool, representation.get("log_scale", False)), digits=representation.get("digits", None), # pyre-ignore[6] is_fidelity=checked_cast(bool, representation.get("is_fidelity", False)), # pyre-ignore[6]: Expected `Union[None, bool, float, int, str]` # for 8th param but got `Union[None, List[ # Union[None, bool, float, int, str]], bool, float, int, str]`. target_value=representation.get("target_value", None), ) @classmethod def _make_choice_param( cls, name: str, representation: TParameterRepresentation, parameter_type: Optional[str], ) -> ChoiceParameter: values = representation["values"] assert isinstance(values, list) and len(values) > 1, ( f"Cannot parse parameter {name}: for choice parameters, json representation" " should include a list of two or more values." ) return ChoiceParameter( name=name, parameter_type=cls._to_parameter_type( values, parameter_type, name, "values" ), values=values, is_ordered=checked_cast_optional(bool, representation.get("is_ordered")), is_fidelity=checked_cast(bool, representation.get("is_fidelity", False)), is_task=checked_cast(bool, representation.get("is_task", False)), target_value=representation.get("target_value", None), # pyre-ignore[6] dependents=checked_cast_optional( dict, representation.get("dependents", None) ), ) @classmethod def _make_fixed_param( cls, name: str, representation: TParameterRepresentation, parameter_type: Optional[str], ) -> FixedParameter: assert "value" in representation, "Value is required for fixed parameters." value = representation["value"] assert type(value) in PARAM_TYPES.values(), ( f"Cannot parse fixed parameter {name}: for fixed parameters, json " "representation should include a single value." ) return FixedParameter( name=name, parameter_type=cls._get_parameter_type(type(value)) # pyre-ignore[6] if parameter_type is None else cls._get_parameter_type(PARAM_TYPES[parameter_type]), # pyre-ignore[6] value=value, # pyre-ignore[6] is_fidelity=checked_cast(bool, representation.get("is_fidelity", False)), target_value=representation.get("target_value", None), # pyre-ignore[6] dependents=representation.get("dependents", None), # pyre-ignore[6] )
[docs] @classmethod def parameter_from_json( cls, representation: TParameterRepresentation, ) -> Parameter: """Instantiate a parameter from JSON representation.""" if "parameter_type" in representation: raise ValueError( "'parameter_type' is not an expected key in parameter dictionary. " "If you are looking to specify the type of values that this " "parameter should take, use 'value_type' (expects 'int', 'float', " "'str' or 'bool')." ) unexpected_keys = set(representation.keys()) - EXPECTED_KEYS_IN_PARAM_REPR if unexpected_keys: raise ValueError( f"Unexpected keys {unexpected_keys} in parameter representation." f"Exhaustive set of expected keys: {EXPECTED_KEYS_IN_PARAM_REPR}." ) name = representation["name"] assert isinstance(name, str), "Parameter name must be a string." parameter_class = representation["type"] assert isinstance(parameter_class, str) and parameter_class in PARAM_CLASSES, ( "Type in parameter JSON representation must be " "`range`, `choice`, or `fixed`." ) parameter_type = representation.get("value_type", None) if parameter_type is not None: assert isinstance(parameter_type, str) and parameter_type in PARAM_TYPES, ( "Value type in parameter JSON representation must be 'int', 'float', " "'bool' or 'str'." ) if parameter_class == "range": return cls._make_range_param( name=name, representation=representation, parameter_type=parameter_type, ) if parameter_class == "choice": assert ( "values" in representation ), "Values are required for choice parameters." values = representation["values"] if isinstance(values, list) and len(values) == 1: if representation.get("dependents"): raise NotImplementedError( "Support for hierarchical fixed parameters coming soon." ) logger.info( f"Choice parameter {name} contains only one value, converting to a" + " fixed parameter instead." ) # update the representation to a fixed parameter class parameter_class = "fixed" representation["type"] = parameter_class representation["value"] = values[0] del representation["values"] else: return cls._make_choice_param( name=name, representation=representation, parameter_type=parameter_type, ) if parameter_class == "fixed": assert not any(isinstance(val, list) for val in representation.values()) return cls._make_fixed_param( name=name, representation=representation, parameter_type=parameter_type, ) else: raise ValueError( # pragma: no cover (this is unreachable) f"Unrecognized parameter type {parameter_class}." )
[docs] @staticmethod def constraint_from_str( representation: str, parameters: Dict[str, Parameter] ) -> ParameterConstraint: """Parse string representation of a parameter constraint.""" tokens = representation.split() parameter_names = parameters.keys() order_const = len(tokens) == 3 and tokens[1] in COMPARISON_OPS sum_const = ( len(tokens) >= 5 and len(tokens) % 2 == 1 and tokens[-2] in COMPARISON_OPS ) if not (order_const or sum_const): raise ValueError( "Parameter constraint should be of form <parameter_name> >= " "<other_parameter_name> for order constraints or `<parameter_name> " "+ <other_parameter_name> >= x, where any number of terms can be " "added and `x` is a float bound. Acceptable comparison operators " 'are ">=" and "<=".' ) if len(tokens) == 3: # Case "x1 >= x2" => order constraint. left, right = tokens[0], tokens[2] assert ( left in parameter_names ), f"Parameter {left} not in {parameter_names}." assert ( right in parameter_names ), f"Parameter {right} not in {parameter_names}." return ( OrderConstraint( lower_parameter=parameters[left], upper_parameter=parameters[right] ) if COMPARISON_OPS[tokens[1]] is ComparisonOp.LEQ else OrderConstraint( lower_parameter=parameters[right], upper_parameter=parameters[left] ) ) try: # Case "x1 - 2*x2 + x3 >= 2" => parameter constraint. bound = float(tokens[-1]) except ValueError: raise ValueError( f"Bound for the constraint must be a number; got {tokens[-1]}" ) if any(token[0] == "*" or token[-1] == "*" for token in tokens): raise ValueError( "A linear constraint should be the form a*x + b*y - c*z <= d" ", where a,b,c,d are float constants and x,y,z are parameters. " "There should be no space in each term around the operator * while " "there should be a single space around each operator +, -, <= and >=." ) parameter_weight = {} comparison_multiplier = ( 1.0 if COMPARISON_OPS[tokens[-2]] is ComparisonOp.LEQ else -1.0 ) operator_sign = 1.0 # Determines whether the operator is + or - for idx, token in enumerate(tokens[:-2]): if idx % 2 == 0: split_token = token.split("*") parameter = "" # Initializing the parameter multiplier = 1.0 # Initializing the multiplier if len(split_token) == 2: # There is a non-unit multiplier try: multiplier = float(split_token[0]) except ValueError: raise ValueError( f"Multiplier should be float; got {split_token[0]}" ) parameter = split_token[1] elif len(split_token) == 1: # The multiplier is either -1 or 1 parameter = split_token[0] if parameter[0] == "-": # The multiplier is -1 parameter = parameter[1:] multiplier = -1.0 else: multiplier = 1.0 assert ( parameter in parameter_names ), f"Parameter {parameter} not in {parameter_names}." parameter_weight[parameter] = operator_sign * multiplier else: assert ( token == "+" or token == "-" ), f"Expected a mixed constraint, found operator {token}." operator_sign = 1.0 if token == "+" else -1.0 return ParameterConstraint( constraint_dict={ p: comparison_multiplier * parameter_weight[p] for p in parameter_weight }, bound=comparison_multiplier * bound, )
[docs] @classmethod def outcome_constraint_from_str(cls, representation: str) -> OutcomeConstraint: """Parse string representation of an outcome constraint.""" tokens = representation.split() assert len(tokens) == 3 and tokens[1] in COMPARISON_OPS, ( "Outcome constraint should be of form `metric_name >= x`, where x is a " "float bound and comparison operator is >= or <=." ) op = COMPARISON_OPS[tokens[1]] rel = False try: bound_repr = tokens[2] if bound_repr[-1] == "%": rel = True bound_repr = bound_repr[:-1] bound = float(bound_repr) except ValueError: raise ValueError("Outcome constraint bound should be a float.") return OutcomeConstraint( cls._make_metric(name=tokens[0], for_opt_config=True), op=op, bound=bound, relative=rel, )
[docs] @classmethod def objective_threshold_constraint_from_str( cls, representation: str, ) -> ObjectiveThreshold: oc = cls.outcome_constraint_from_str(representation) return ObjectiveThreshold( metric=oc.metric.clone(), bound=oc.bound, relative=oc.relative, op=oc.op, )
[docs] @classmethod def make_objectives(cls, objectives: Dict[str, str]) -> List[Objective]: try: output_objectives = [] for metric_name, min_or_max in objectives.items(): minimize = ( MetricObjective[min_or_max.upper()] == MetricObjective.MINIMIZE ) objective = Objective( metric=cls._make_metric( name=metric_name, for_opt_config=True, lower_is_better=minimize, ), minimize=minimize, ) output_objectives.append(objective) return output_objectives except KeyError as k: raise ValueError( "Objective values should specify " f"'{MetricObjective.MINIMIZE.name.lower()}' or " f"'{MetricObjective.MAXIMIZE.name.lower()}', got {k} in" f" objectives({objectives})" )
[docs] @classmethod def make_outcome_constraints( cls, outcome_constraints: List[str], status_quo_defined: bool ) -> List[OutcomeConstraint]: typed_outcome_constraints = [ cls.outcome_constraint_from_str(c) for c in outcome_constraints ] if status_quo_defined is False and any( oc.relative for oc in typed_outcome_constraints ): raise ValueError( "Must set status_quo to have relative outcome constraints." ) return typed_outcome_constraints
[docs] @classmethod def make_objective_thresholds( cls, objective_thresholds: List[str], status_quo_defined: bool ) -> List[ObjectiveThreshold]: typed_objective_thresholds = ( [ cls.objective_threshold_constraint_from_str(c) for c in objective_thresholds ] if objective_thresholds is not None else [] ) if status_quo_defined is False and any( oc.relative for oc in typed_objective_thresholds ): raise ValueError( "Must set status_quo to have relative objective thresholds." ) return typed_objective_thresholds
[docs] @staticmethod def optimization_config_from_objectives( objectives: List[Objective], objective_thresholds: List[ObjectiveThreshold], outcome_constraints: List[OutcomeConstraint], ) -> OptimizationConfig: """Parse objectives and constraints to define optimization config. The resulting optimization config will be regular single-objective config if `objectives` is a list of one element and a multi-objective config otherwise. NOTE: If passing in multiple objectives, `objective_thresholds` must be a non-empty list definining constraints for each objective. """ if len(objectives) == 1: if objective_thresholds: raise ValueError( "Single-objective optimizations must not specify objective " "thresholds." ) return OptimizationConfig( objective=objectives[0], outcome_constraints=outcome_constraints, ) if not objective_thresholds: logger.info( "Due to non-specification, we will use the heuristic for selecting " "objective thresholds." ) return MultiObjectiveOptimizationConfig( objective=MultiObjective(objectives=objectives), outcome_constraints=outcome_constraints, objective_thresholds=objective_thresholds, )
[docs] @classmethod def make_optimization_config( cls, objectives: Dict[str, str], objective_thresholds: List[str], outcome_constraints: List[str], status_quo_defined: bool, ) -> OptimizationConfig: return cls.optimization_config_from_objectives( cls.make_objectives(objectives), cls.make_objective_thresholds(objective_thresholds, status_quo_defined), cls.make_outcome_constraints(outcome_constraints, status_quo_defined), )
[docs] @classmethod def make_optimization_config_from_properties( cls, objectives: Optional[Dict[str, ObjectiveProperties]] = None, outcome_constraints: Optional[List[str]] = None, status_quo_defined: bool = False, ) -> Optional[OptimizationConfig]: """Makes optimization config based on ObjectiveProperties objects Args: objectives: Mapping from an objective name to object containing: minimize: Whether this experiment represents a minimization problem. threshold: The bound in the objective's threshold constraint. outcome_constraints: List of string representation of outcome constraints of form "metric_name >= bound", like "m1 <= 3." status_quo_defined: bool for whether the experiment has a status quo """ if objectives is not None: objective_thresholds = ( cls.build_objective_thresholds(objectives) if objectives is not None else [] ) simple_objectives = { objective: ("minimize" if properties.minimize else "maximize") for objective, properties in objectives.items() } return cls.make_optimization_config( objectives=simple_objectives, objective_thresholds=objective_thresholds, outcome_constraints=outcome_constraints or [], status_quo_defined=status_quo_defined, ) return None
[docs] @classmethod def make_search_space( cls, parameters: List[TParameterRepresentation], parameter_constraints: List[str], ) -> SearchSpace: typed_parameters = [cls.parameter_from_json(p) for p in parameters] is_hss = any(p.is_hierarchical for p in typed_parameters) search_space_cls = HierarchicalSearchSpace if is_hss else SearchSpace parameter_map = {p.name: p for p in typed_parameters} typed_parameter_constraints = [ cls.constraint_from_str(c, parameter_map) for c in parameter_constraints ] if any( any( isinstance(parameter_map[parameter], ChoiceParameter) for parameter in constraint.constraint_dict ) for constraint in typed_parameter_constraints ): raise UnsupportedError( "Constraints on ChoiceParameters are not allowed. Try absorbing " "this constraint into the associated range parameter's bounds." ) if any( any( isinstance(parameter_map[parameter], FixedParameter) for parameter in constraint.constraint_dict ) for constraint in typed_parameter_constraints ): raise UnsupportedError( "Constraints on FixedParameters are not allowed. Try absorbing " "this constraint into the associated range parameter's bounds." ) ss = search_space_cls( parameters=typed_parameters, parameter_constraints=typed_parameter_constraints, ) logger.info(f"Created search space: {ss}.") if is_hss: hss = checked_cast(HierarchicalSearchSpace, ss) logger.info( "Hieararchical structure of the search space: \n" f"{hss.hierarchical_structure_str(parameter_names_only=True)}" ) return search_space_cls( parameters=typed_parameters, parameter_constraints=typed_parameter_constraints, )
@classmethod def _make_optimization_config_from_legacy_args( cls, objective_name: str, minimize: bool = False, support_intermediate_data: bool = False, outcome_constraints: Optional[List[str]] = None, status_quo_arm: Optional[Arm] = None, ) -> Optional[OptimizationConfig]: """This will create a single objective OptimizationConfig based on the objective_name arg. The return is optional because in subclasses we may not wish to return any default optimization config """ return OptimizationConfig( objective=Objective( metric=cls._make_metric( name=objective_name, lower_is_better=minimize, metric_class_override=MapMetric if support_intermediate_data else Metric, for_opt_config=True, ), minimize=minimize, ), outcome_constraints=cls.make_outcome_constraints( outcome_constraints or [], status_quo_arm is not None ), )
[docs] @classmethod def make_experiment( cls, parameters: List[TParameterRepresentation], name: Optional[str] = None, description: Optional[str] = None, parameter_constraints: Optional[List[str]] = None, outcome_constraints: Optional[List[str]] = None, status_quo: Optional[TParameterization] = None, experiment_type: Optional[str] = None, tracking_metric_names: Optional[List[str]] = None, # Single-objective optimization arguments: objective_name: Optional[str] = None, minimize: bool = False, # Multi-objective optimization arguments: objectives: Optional[Dict[str, str]] = None, objective_thresholds: Optional[List[str]] = None, support_intermediate_data: bool = False, immutable_search_space_and_opt_config: bool = True, is_test: bool = False, ) -> Experiment: """Instantiation wrapper that allows for Ax `Experiment` creation without importing or instantiating any Ax classes. Args: parameters: List of dictionaries representing parameters in the experiment search space. Required elements in the dictionaries are: 1. "name" (name of parameter, string), 2. "type" (type of parameter: "range", "fixed", or "choice", string), and one of the following: 3a. "bounds" for range parameters (list of two values, lower bound first), 3b. "values" for choice parameters (list of values), or 3c. "value" for fixed parameters (single value). Optional elements are: 1. "log_scale" (for float-valued range parameters, bool), 2. "value_type" (to specify type that values of this parameter should take; expects "float", "int", "bool" or "str"), 3. "is_fidelity" (bool) and "target_value" (float) for fidelity parameters, 4. "is_ordered" (bool) for choice parameters, 5. "is_task" (bool) for task parameters, and 6. "digits" (int) for float-valued range parameters. name: Name of the experiment to be created. parameter_constraints: List of string representation of parameter constraints, such as "x3 >= x4" or "-x3 + 2*x4 - 3.5*x5 >= 2". For the latter constraints, any number of arguments is accepted, and acceptable operators are "<=" and ">=". outcome_constraints: List of string representation of outcome constraints of form "metric_name >= bound", like "m1 <= 3." status_quo: Parameterization of the current state of the system. If set, this will be added to each trial to be evaluated alongside test configurations. experiment_type: String indicating type of the experiment (e.g. name of a product in which it is used), if any. tracking_metric_names: Names of additional tracking metrics not used for optimization. objective_name: Name of the metric used as objective in this experiment, if experiment is single-objective optimization. minimize: Whether this experiment represents a minimization problem, if experiment is a single-objective optimization. objectives: Mapping from an objective name to "minimize" or "maximize" representing the direction for that objective. Used only for multi-objective optimization experiments. objective_thresholds: A list of objective threshold constraints for multi- objective optimization, in the same string format as `outcome_constraints` argument. support_intermediate_data: Whether trials may report metrics results for incomplete runs. immutable_search_space_and_opt_config: Whether it's possible to update the search space and optimization config on this experiment after creation. Defaults to True. If set to True, we won't store or load copies of the search space and optimization config on each generator run, which will improve storage performance. is_test: Whether this experiment will be a test experiment (useful for marking test experiments in storage etc). Defaults to False. """ if objective_name is not None and ( objectives is not None or objective_thresholds is not None ): raise UnsupportedError( "Ambiguous objective definition: for single-objective optimization " "`objective_name` and `minimize` arguments expected. For " "multi-objective optimization `objectives` and `objective_thresholds` " "arguments expected." ) status_quo_arm = None if status_quo is None else Arm(parameters=status_quo) # TODO(jej): Needs to be decided per-metric when supporting heterogenous data. if objectives is None: optimization_config = cls._make_optimization_config_from_legacy_args( objective_name=objective_name or DEFAULT_OBJECTIVE_NAME, minimize=minimize, support_intermediate_data=support_intermediate_data, outcome_constraints=outcome_constraints, status_quo_arm=status_quo_arm, ) else: optimization_config = cls.make_optimization_config( objectives, objective_thresholds or [], outcome_constraints or [], status_quo_arm is not None, ) tracking_metrics = ( None if tracking_metric_names is None else [ cls._make_metric(name=metric_name) for metric_name in tracking_metric_names ] ) default_data_type = ( DataType.MAP_DATA if support_intermediate_data else DataType.DATA ) immutable_ss_and_oc = immutable_search_space_and_opt_config properties = ( {} if not immutable_search_space_and_opt_config else {Keys.IMMUTABLE_SEARCH_SPACE_AND_OPT_CONF.value: immutable_ss_and_oc} ) return Experiment( name=name, description=description, search_space=cls.make_search_space(parameters, parameter_constraints or []), optimization_config=optimization_config, status_quo=status_quo_arm, experiment_type=experiment_type, tracking_metrics=tracking_metrics, default_data_type=default_data_type, properties=properties, is_test=is_test, )
[docs] @staticmethod def raw_data_to_evaluation( raw_data: TEvaluationOutcome, metric_names: List[str], start_time: Optional[int] = None, end_time: Optional[int] = None, ) -> TEvaluationOutcome: """Format the trial evaluation data to a standard `TTrialEvaluation` (mapping from metric names to a tuple of mean and SEM) representation, or to a TMapTrialEvaluation. Note: this function expects raw_data to be data for a `Trial`, not a `BatchedTrial`. """ if isinstance(raw_data, dict): if any(isinstance(x, dict) for x in raw_data.values()): # pragma: no cover raise ValueError("Raw data is expected to be just for one arm.") for metric_name, dat in raw_data.items(): if not isinstance(dat, tuple): if not isinstance(dat, (float, int)): raise ValueError( "Raw data for an arm is expected to either be a tuple of " "numerical mean and SEM or just a numerical mean." f"Got: {dat} for metric '{metric_name}'." ) raw_data[metric_name] = (float(dat), None) return raw_data elif len(metric_names) > 1: raise ValueError( "Raw data must be a dictionary of metric names to mean " "for multi-objective optimizations." ) elif isinstance(raw_data, list): return raw_data elif isinstance(raw_data, tuple): return {metric_names[0]: raw_data} elif isinstance(raw_data, (float, int)): return {metric_names[0]: (raw_data, None)} elif isinstance(raw_data, (np.float32, np.float64, np.int32, np.int64)): return {metric_names[0]: (numpy_type_to_python_type(raw_data), None)} else: raise ValueError( "Raw data has an invalid type. The data must either be in the form " "of a dictionary of metric names to mean, sem tuples, " "or a single mean, sem tuple, or a single mean." )
[docs] @classmethod def data_and_evaluations_from_raw_data( cls, raw_data: Dict[str, TEvaluationOutcome], metric_names: List[str], trial_index: int, sample_sizes: Dict[str, int], start_time: Optional[int] = None, end_time: Optional[int] = None, ) -> Tuple[Dict[str, TEvaluationOutcome], Data]: """Transforms evaluations into Ax Data. Each evaluation is either a trial evaluation: {metric_name -> (mean, SEM)} or a fidelity trial evaluation for multi-fidelity optimizations: [(fidelities, {metric_name -> (mean, SEM)})]. Args: raw_data: Mapping from arm name to raw_data. metric_names: Names of metrics used to transform raw data to evaluations. trial_index: Index of the trial, for which the evaluations are. sample_sizes: Number of samples collected for each arm, may be empty if unavailable. start_time: Optional start time of run of the trial that produced this data, in milliseconds. end_time: Optional end time of run of the trial that produced this data, in milliseconds. """ evaluations = { arm_name: cls.raw_data_to_evaluation( raw_data=raw_data[arm_name], metric_names=metric_names, start_time=start_time, end_time=end_time, ) for arm_name in raw_data } if all(isinstance(evaluations[x], dict) for x in evaluations.keys()): # All evaluations are no-fidelity evaluations. data = Data.from_evaluations( evaluations=cast(Dict[str, TTrialEvaluation], evaluations), trial_index=trial_index, sample_sizes=sample_sizes, start_time=start_time, end_time=end_time, ) elif all(isinstance(evaluations[x], list) for x in evaluations.keys()): # All evaluations are map evaluations. data = MapData.from_map_evaluations( evaluations=cast(Dict[str, TMapTrialEvaluation], evaluations), trial_index=trial_index, ) else: raise ValueError( # pragma: no cover "Evaluations included a mixture of no-fidelity and with-fidelity " "evaluations, which is not currently supported." ) return evaluations, data
[docs] @classmethod def build_objective_thresholds( cls, objectives: Dict[str, ObjectiveProperties] ) -> List[str]: """Construct a list of constraint string for an objective thresholds interpretable by `make_experiment()` Args: objectives: Mapping of name of the objective to Object containing: minimize: Whether this experiment represents a minimization problem. threshold: The bound in the objective's threshold constraint. """ return [ cls.build_objective_threshold(objective, properties) for objective, properties in objectives.items() if properties.threshold is not None ]
[docs] @staticmethod def build_objective_threshold( objective: str, objective_properties: ObjectiveProperties ) -> str: """ Constructs constraint string for an objective threshold interpretable by `make_experiment()` Args: objective: Name of the objective objective_properties: Object containing: minimize: Whether this experiment represents a minimization problem. threshold: The bound in the objective's threshold constraint. """ operator = "<=" if objective_properties.minimize else ">=" return f"{objective} {operator} {objective_properties.threshold}"