ax.storage¶
JSON¶
ax.storage.json_store.decoder module¶
-
ax.storage.json_store.decoder.
ax_class_from_json_dict
(_class: Type, object_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → Any[source]¶ Reinstantiates an Ax class registered in DECODER_REGISTRY from a JSON dict.
-
ax.storage.json_store.decoder.
data_from_json
(data_by_trial_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → Dict[int, OrderedDict[int, Data]][source]¶ Load Ax Data from JSON.
-
ax.storage.json_store.decoder.
experiment_from_json
(object_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → ax.core.experiment.Experiment[source]¶ Load Ax Experiment from JSON.
-
ax.storage.json_store.decoder.
generation_step_from_json
(generation_step_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → ax.modelbridge.generation_node.GenerationStep[source]¶ Load generation step from JSON.
-
ax.storage.json_store.decoder.
generation_strategy_from_json
(generation_strategy_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}, experiment: Optional[ax.core.experiment.Experiment] = None) → ax.modelbridge.generation_strategy.GenerationStrategy[source]¶ Load generation strategy from JSON.
-
ax.storage.json_store.decoder.
generator_run_from_json
(object_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → ax.core.generator_run.GeneratorRun[source]¶ Load Ax GeneratorRun from JSON.
-
ax.storage.json_store.decoder.
multi_type_experiment_from_json
(object_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → ax.core.multi_type_experiment.MultiTypeExperiment[source]¶ Load AE MultiTypeExperiment from JSON.
-
ax.storage.json_store.decoder.
object_from_json
(object_json: Any, decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → Any[source]¶ Recursively load objects from a JSON-serializable dictionary.
-
ax.storage.json_store.decoder.
parameter_constraints_from_json
(parameter_constraint_json: List[Dict[str, Any]], parameters: List[ax.core.parameter.Parameter], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → List[ax.core.parameter_constraint.ParameterConstraint][source]¶ Load ParameterConstraints from JSON.
Order and SumConstraint are tied to a search space, and require that SearchSpace’s parameters to be passed in for decoding.
- Parameters
parameter_constraint_json – JSON representation of parameter constraints.
parameters – Parameter definitions for decoding via parameter names.
- Returns
Python classes for parameter constraints.
- Return type
parameter_constraints
-
ax.storage.json_store.decoder.
runner_from_json
(_class: Type[ax.core.runner.Runner], runner_json: Dict[str, Any]) → ax.core.runner.Runner[source]¶
-
ax.storage.json_store.decoder.
search_space_from_json
(search_space_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → ax.core.search_space.SearchSpace[source]¶ Load a SearchSpace from JSON.
This function is necessary due to the coupled loading of SearchSpace and parameter constraints.
-
ax.storage.json_store.decoder.
trials_from_json
(experiment: ax.core.experiment.Experiment, trials_json: Dict[str, Any], decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → Dict[int, ax.core.base_trial.BaseTrial][source]¶ Load Ax Trials from JSON.
ax.storage.json_store.decoders module¶
-
ax.storage.json_store.decoders.
batch_trial_from_json
(experiment: core.experiment.Experiment, index: int, trial_type: Optional[str], status: TrialStatus, time_created: datetime, time_completed: Optional[datetime], time_staged: Optional[datetime], time_run_started: Optional[datetime], abandoned_reason: Optional[str], run_metadata: Optional[Dict[str, Any]], generator_run_structs: List[GeneratorRunStruct], runner: Optional[Runner], abandoned_arms_metadata: Dict[str, AbandonedArm], num_arms_created: int, status_quo: Optional[Arm], status_quo_weight_override: float, optimize_for_power: Optional[bool], ttl_seconds: Optional[int] = None, generation_step_index: Optional[int] = None, properties: Optional[Dict[str, Any]] = None, stop_metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → BatchTrial[source]¶ Load Ax BatchTrial from JSON.
Other classes don’t need explicit deserializers, because we can just use their constructors (see decoder.py). However, the constructor for Batch does not allow us to exactly recreate an existing object.
-
ax.storage.json_store.decoders.
botorch_component_from_json
(botorch_class: Any, json: Dict[str, Any]) → Type[Any][source]¶ Load any instance of gpytorch.Module or descendent registered in CLASS_DECODER_REGISTRY from state dict.
-
ax.storage.json_store.decoders.
class_from_json
(json: Dict[str, Any]) → Type[Any][source]¶ Load any class registered in CLASS_DECODER_REGISTRY from JSON.
-
ax.storage.json_store.decoders.
transform_type_from_json
(object_json: Dict[str, Any]) → Type[ax.modelbridge.transforms.base.Transform][source]¶ Load the transform type from JSON.
-
ax.storage.json_store.decoders.
trial_from_json
(experiment: core.experiment.Experiment, index: int, trial_type: Optional[str], status: TrialStatus, time_created: datetime, time_completed: Optional[datetime], time_staged: Optional[datetime], time_run_started: Optional[datetime], abandoned_reason: Optional[str], run_metadata: Optional[Dict[str, Any]], generator_run: GeneratorRun, runner: Optional[Runner], num_arms_created: int, ttl_seconds: Optional[int] = None, generation_step_index: Optional[int] = None, properties: Optional[Dict[str, Any]] = None, stop_metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → Trial[source]¶ Load Ax trial from JSON.
Other classes don’t need explicit deserializers, because we can just use their constructors (see decoder.py). However, the constructor for Trial does not allow us to exactly recreate an existing object.
ax.storage.json_store.encoder module¶
-
ax.storage.json_store.encoder.
object_to_json
(obj: Any, encoder_registry: Dict[Type, Callable[[Any], Dict[str, Any]]] = {<class 'ax.core.arm.Arm'>: <function arm_to_dict>, <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.metrics.branin.AugmentedBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>: <function metric_to_dict>, <class 'ax.core.batch_trial.BatchTrial'>: <function batch_to_dict>, <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>: <function botorch_model_to_dict>, <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>: <function metric_to_dict>, <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>: <function runner_to_dict>, <class 'ax.metrics.branin.BraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.ChoiceParameter'>: <function choice_parameter_to_dict>, <class 'ax.core.data.Data'>: <function data_to_dict>, <class 'ax.core.experiment.Experiment'>: <function experiment_to_dict>, <class 'ax.metrics.factorial.FactorialMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.FixedParameter'>: <function fixed_parameter_to_dict>, <class 'gpytorch.priors.torch_priors.GammaPrior'>: <function botorch_component_to_dict>, <class 'ax.modelbridge.generation_node.GenerationStep'>: <function generation_step_to_dict>, <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>: <function generation_strategy_to_dict>, <class 'ax.core.generator_run.GeneratorRun'>: <function generator_run_to_dict>, <class 'ax.metrics.hartmann6.Hartmann6Metric'>: <function metric_to_dict>, <class 'gpytorch.constraints.constraints.Interval'>: <function botorch_component_to_dict>, <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>: <function surrogate_to_dict>, <class 'ax.metrics.l2norm.L2NormMetric'>: <function metric_to_dict>, <class 'ax.core.map_data.MapData'>: <function map_data_to_dict>, <class 'ax.core.map_data.MapKeyInfo'>: <function map_key_info_to_dict>, <class 'ax.core.map_metric.MapMetric'>: <function metric_to_dict>, <class 'ax.core.metric.Metric'>: <function metric_to_dict>, <class 'ax.core.objective.MultiObjective'>: <function multi_objective_to_dict>, <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>: <function multi_objective_optimization_config_to_dict>, <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>: <function multi_type_experiment_to_dict>, <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>: <function percentile_early_stopping_strategy_to_dict>, <class 'ax.metrics.sklearn.SklearnMetric'>: <function metric_to_dict>, <class 'ax.metrics.chemistry.ChemistryMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin.NegativeBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>: <function metric_to_dict>, <class 'ax.core.objective.Objective'>: <function objective_to_dict>, <class 'ax.core.outcome_constraint.ObjectiveThreshold'>: <function outcome_constraint_to_dict>, <class 'ax.core.optimization_config.OptimizationConfig'>: <function optimization_config_to_dict>, <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.core.parameter_constraint.OrderConstraint'>: <function order_parameter_constraint_to_dict>, <class 'ax.core.outcome_constraint.OutcomeConstraint'>: <function outcome_constraint_to_dict>, <class 'ax.core.parameter_constraint.ParameterConstraint'>: <function parameter_constraint_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>: <function pytorch_cnn_torchvision_benchmark_problem_to_dict>, <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>: <function metric_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>: <function runner_to_dict>, <class 'ax.core.parameter.RangeParameter'>: <function range_parameter_to_dict>, <class 'ax.core.objective.ScalarizedObjective'>: <function scalarized_objective_to_dict>, <class 'ax.core.search_space.SearchSpace'>: <function search_space_to_dict>, <class 'ax.core.search_space.HierarchicalSearchSpace'>: <function search_space_to_dict>, <class 'ax.core.parameter_constraint.SumConstraint'>: <function sum_parameter_constraint_to_dict>, <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>: <function surrogate_to_dict>, <class 'ax.runners.synthetic.SyntheticRunner'>: <function runner_to_dict>, <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>: <function threshold_early_stopping_strategy_to_dict>, <class 'ax.core.trial.Trial'>: <function trial_to_dict>, <class 'ax.core.observation.ObservationFeatures'>: <function observation_features_to_dict>, <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>: <function winsorization_config_to_dict>}, class_encoder_registry: Dict[Type, Callable[[Any], Dict[str, Any]]] = {<class 'ax.models.torch.botorch_modular.acquisition.Acquisition'>: <function botorch_modular_to_dict>, <class 'botorch.acquisition.acquisition.AcquisitionFunction'>: <function botorch_modular_to_dict>, <class 'gpytorch.likelihoods.likelihood.Likelihood'>: <function botorch_modular_to_dict>, <class 'torch.nn.modules.module.Module'>: <function botorch_modular_to_dict>, <class 'gpytorch.mlls.marginal_log_likelihood.MarginalLogLikelihood'>: <function botorch_modular_to_dict>, <class 'botorch.models.model.Model'>: <function botorch_modular_to_dict>, <class 'ax.modelbridge.transforms.base.Transform'>: <function transform_type_to_dict>}) → Any[source]¶ Convert an Ax object to a JSON-serializable dictionary.
The root node passed to this function should always be an instance of a core Ax class or a JSON-compatible python builtin. The sub-fields of the input will then be recursively passed to this function.
e.g. if we pass an instance of Experiment, we will first fall through to the line object_dict = ENCODER_REGISTRY[_type](object), which will convert the Experiment to a (shallow) dictionary, where search subfield remains “unconverted”, i.e.: {“name”: <name: string>, “search_space”: <search space: SearchSpace>}. We then pass each item of the dictionary back into this function to recursively convert the entire object.
ax.storage.json_store.encoders module¶
-
ax.storage.json_store.encoders.
arm_to_dict
(arm: ax.core.arm.Arm) → Dict[str, Any][source]¶ Convert Ax arm to a dictionary.
-
ax.storage.json_store.encoders.
batch_to_dict
(batch: ax.core.batch_trial.BatchTrial) → Dict[str, Any][source]¶ Convert Ax batch to a dictionary.
-
ax.storage.json_store.encoders.
botorch_component_to_dict
(input_obj: Type[Any]) → Dict[str, Any][source]¶
-
ax.storage.json_store.encoders.
botorch_model_to_dict
(model: ax.models.torch.botorch_modular.model.BoTorchModel) → Dict[str, Any][source]¶ Convert Ax model to a dictionary.
-
ax.storage.json_store.encoders.
botorch_modular_to_dict
(class_type: Type[Any]) → Dict[str, Any][source]¶ Convert any class to a dictionary.
-
ax.storage.json_store.encoders.
choice_parameter_to_dict
(parameter: ax.core.parameter.ChoiceParameter) → Dict[str, Any][source]¶ Convert Ax choice parameter to a dictionary.
-
ax.storage.json_store.encoders.
data_to_dict
(data: ax.core.data.Data) → Dict[str, Any][source]¶ Convert Ax data to a dictionary.
-
ax.storage.json_store.encoders.
experiment_to_dict
(experiment: ax.core.experiment.Experiment) → Dict[str, Any][source]¶ Convert Ax experiment to a dictionary.
-
ax.storage.json_store.encoders.
fixed_parameter_to_dict
(parameter: ax.core.parameter.FixedParameter) → Dict[str, Any][source]¶ Convert Ax fixed parameter to a dictionary.
-
ax.storage.json_store.encoders.
generation_step_to_dict
(generation_step: ax.modelbridge.generation_node.GenerationStep) → Dict[str, Any][source]¶ Converts Ax generation step to a dictionary.
-
ax.storage.json_store.encoders.
generation_strategy_to_dict
(generation_strategy: ax.modelbridge.generation_strategy.GenerationStrategy) → Dict[str, Any][source]¶ Converts Ax generation strategy to a dictionary.
-
ax.storage.json_store.encoders.
generator_run_to_dict
(generator_run: ax.core.generator_run.GeneratorRun) → Dict[str, Any][source]¶ Convert Ax generator run to a dictionary.
-
ax.storage.json_store.encoders.
logical_early_stopping_strategy_to_dict
(strategy: ax.early_stopping.strategies.logical.LogicalEarlyStoppingStrategy) → Dict[str, Any][source]¶
-
ax.storage.json_store.encoders.
map_data_to_dict
(map_data: ax.core.map_data.MapData) → Dict[str, Any][source]¶ Convert Ax map data to a dictionary.
-
ax.storage.json_store.encoders.
map_key_info_to_dict
(mki: ax.core.map_data.MapKeyInfo) → Dict[str, Any][source]¶ Convert Ax map data metadata to a dictionary.
-
ax.storage.json_store.encoders.
metric_to_dict
(metric: ax.core.metric.Metric) → Dict[str, Any][source]¶ Convert Ax metric to a dictionary.
-
ax.storage.json_store.encoders.
multi_objective_optimization_config_to_dict
(multi_objective_optimization_config: ax.core.optimization_config.MultiObjectiveOptimizationConfig) → Dict[str, Any][source]¶ Convert Ax optimization config to a dictionary.
-
ax.storage.json_store.encoders.
multi_objective_to_dict
(objective: ax.core.objective.MultiObjective) → Dict[str, Any][source]¶ Convert Ax objective to a dictionary.
-
ax.storage.json_store.encoders.
multi_type_experiment_to_dict
(experiment: ax.core.multi_type_experiment.MultiTypeExperiment) → Dict[str, Any][source]¶ Convert AE multitype experiment to a dictionary.
-
ax.storage.json_store.encoders.
objective_to_dict
(objective: ax.core.objective.Objective) → Dict[str, Any][source]¶ Convert Ax objective to a dictionary.
-
ax.storage.json_store.encoders.
observation_features_to_dict
(obs_features: ax.core.observation.ObservationFeatures) → Dict[str, Any][source]¶ Converts Ax observation features to a dictionary
-
ax.storage.json_store.encoders.
optimization_config_to_dict
(optimization_config: ax.core.optimization_config.OptimizationConfig) → Dict[str, Any][source]¶ Convert Ax optimization config to a dictionary.
-
ax.storage.json_store.encoders.
order_parameter_constraint_to_dict
(parameter_constraint: ax.core.parameter_constraint.OrderConstraint) → Dict[str, Any][source]¶ Convert Ax order parameter constraint to a dictionary.
-
ax.storage.json_store.encoders.
outcome_constraint_to_dict
(outcome_constraint: ax.core.outcome_constraint.OutcomeConstraint) → Dict[str, Any][source]¶ Convert Ax outcome constraint to a dictionary.
-
ax.storage.json_store.encoders.
parameter_constraint_to_dict
(parameter_constraint: ax.core.parameter_constraint.ParameterConstraint) → Dict[str, Any][source]¶ Convert Ax sum parameter constraint to a dictionary.
-
ax.storage.json_store.encoders.
percentile_early_stopping_strategy_to_dict
(strategy: ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy) → Dict[str, Any][source]¶ Convert Ax percentile early stopping strategy to a dictionary.
-
ax.storage.json_store.encoders.
pytorch_cnn_torchvision_benchmark_problem_to_dict
(problem: ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem) → Dict[str, Any][source]¶
-
ax.storage.json_store.encoders.
range_parameter_to_dict
(parameter: ax.core.parameter.RangeParameter) → Dict[str, Any][source]¶ Convert Ax range parameter to a dictionary.
-
ax.storage.json_store.encoders.
runner_to_dict
(runner: ax.core.runner.Runner) → Dict[str, Any][source]¶ Convert Ax runner to a dictionary.
-
ax.storage.json_store.encoders.
scalarized_objective_to_dict
(objective: ax.core.objective.ScalarizedObjective) → Dict[str, Any][source]¶ Convert Ax objective to a dictionary.
-
ax.storage.json_store.encoders.
search_space_to_dict
(search_space: ax.core.search_space.SearchSpace) → Dict[str, Any][source]¶ Convert Ax search space to a dictionary.
-
ax.storage.json_store.encoders.
sum_parameter_constraint_to_dict
(parameter_constraint: ax.core.parameter_constraint.SumConstraint) → Dict[str, Any][source]¶ Convert Ax sum parameter constraint to a dictionary.
-
ax.storage.json_store.encoders.
surrogate_to_dict
(surrogate: ax.models.torch.botorch_modular.surrogate.Surrogate) → Dict[str, Any][source]¶ Convert Ax surrogate to a dictionary.
-
ax.storage.json_store.encoders.
threshold_early_stopping_strategy_to_dict
(strategy: ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy) → Dict[str, Any][source]¶ Convert Ax metric-threshold early stopping strategy to a dictionary.
-
ax.storage.json_store.encoders.
transform_type_to_dict
(transform_type: Type[ax.modelbridge.transforms.base.Transform]) → Dict[str, Any][source]¶ Convert a transform class to a dictionary.
-
ax.storage.json_store.encoders.
trial_to_dict
(trial: ax.core.trial.Trial) → Dict[str, Any][source]¶ Convert Ax trial to a dictionary.
-
ax.storage.json_store.encoders.
winsorization_config_to_dict
(config: ax.modelbridge.transforms.winsorize.WinsorizationConfig) → Dict[str, Any][source]¶ Convert Ax winsorization config to a dictionary.
ax.storage.json_store.load module¶
-
ax.storage.json_store.load.
load_experiment
(filepath: str, decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, class_decoder_registry: Dict[str, Callable[[Dict[str, Any]], Any]] = {'Type[AcquisitionFunction]': <function class_from_json>, 'Type[Acquisition]': <function class_from_json>, 'Type[Likelihood]': <function class_from_json>, 'Type[MarginalLogLikelihood]': <function class_from_json>, 'Type[Model]': <function class_from_json>, 'Type[Module]': <function class_from_json>, 'Type[Transform]': <function transform_type_from_json>}) → ax.core.experiment.Experiment[source]¶ Load experiment from file.
Read file.
Convert dictionary to Ax experiment instance.
ax.storage.json_store.registry module¶
ax.storage.json_store.save module¶
-
ax.storage.json_store.save.
save_experiment
(experiment: ax.core.experiment.Experiment, filepath: str, encoder_registry: Dict[Type, Callable[[Any], Dict[str, Any]]] = {<class 'ax.core.arm.Arm'>: <function arm_to_dict>, <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.metrics.branin.AugmentedBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>: <function metric_to_dict>, <class 'ax.core.batch_trial.BatchTrial'>: <function batch_to_dict>, <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>: <function botorch_model_to_dict>, <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>: <function metric_to_dict>, <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>: <function runner_to_dict>, <class 'ax.metrics.branin.BraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.ChoiceParameter'>: <function choice_parameter_to_dict>, <class 'ax.core.data.Data'>: <function data_to_dict>, <class 'ax.core.experiment.Experiment'>: <function experiment_to_dict>, <class 'ax.metrics.factorial.FactorialMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.FixedParameter'>: <function fixed_parameter_to_dict>, <class 'gpytorch.priors.torch_priors.GammaPrior'>: <function botorch_component_to_dict>, <class 'ax.modelbridge.generation_node.GenerationStep'>: <function generation_step_to_dict>, <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>: <function generation_strategy_to_dict>, <class 'ax.core.generator_run.GeneratorRun'>: <function generator_run_to_dict>, <class 'ax.metrics.hartmann6.Hartmann6Metric'>: <function metric_to_dict>, <class 'gpytorch.constraints.constraints.Interval'>: <function botorch_component_to_dict>, <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>: <function surrogate_to_dict>, <class 'ax.metrics.l2norm.L2NormMetric'>: <function metric_to_dict>, <class 'ax.core.map_data.MapData'>: <function map_data_to_dict>, <class 'ax.core.map_data.MapKeyInfo'>: <function map_key_info_to_dict>, <class 'ax.core.map_metric.MapMetric'>: <function metric_to_dict>, <class 'ax.core.metric.Metric'>: <function metric_to_dict>, <class 'ax.core.objective.MultiObjective'>: <function multi_objective_to_dict>, <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>: <function multi_objective_optimization_config_to_dict>, <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>: <function multi_type_experiment_to_dict>, <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>: <function percentile_early_stopping_strategy_to_dict>, <class 'ax.metrics.sklearn.SklearnMetric'>: <function metric_to_dict>, <class 'ax.metrics.chemistry.ChemistryMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin.NegativeBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>: <function metric_to_dict>, <class 'ax.core.objective.Objective'>: <function objective_to_dict>, <class 'ax.core.outcome_constraint.ObjectiveThreshold'>: <function outcome_constraint_to_dict>, <class 'ax.core.optimization_config.OptimizationConfig'>: <function optimization_config_to_dict>, <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.core.parameter_constraint.OrderConstraint'>: <function order_parameter_constraint_to_dict>, <class 'ax.core.outcome_constraint.OutcomeConstraint'>: <function outcome_constraint_to_dict>, <class 'ax.core.parameter_constraint.ParameterConstraint'>: <function parameter_constraint_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>: <function pytorch_cnn_torchvision_benchmark_problem_to_dict>, <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>: <function metric_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>: <function runner_to_dict>, <class 'ax.core.parameter.RangeParameter'>: <function range_parameter_to_dict>, <class 'ax.core.objective.ScalarizedObjective'>: <function scalarized_objective_to_dict>, <class 'ax.core.search_space.SearchSpace'>: <function search_space_to_dict>, <class 'ax.core.search_space.HierarchicalSearchSpace'>: <function search_space_to_dict>, <class 'ax.core.parameter_constraint.SumConstraint'>: <function sum_parameter_constraint_to_dict>, <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>: <function surrogate_to_dict>, <class 'ax.runners.synthetic.SyntheticRunner'>: <function runner_to_dict>, <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>: <function threshold_early_stopping_strategy_to_dict>, <class 'ax.core.trial.Trial'>: <function trial_to_dict>, <class 'ax.core.observation.ObservationFeatures'>: <function observation_features_to_dict>, <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>: <function winsorization_config_to_dict>}, class_encoder_registry: Dict[Type, Callable[[Any], Dict[str, Any]]] = {<class 'ax.models.torch.botorch_modular.acquisition.Acquisition'>: <function botorch_modular_to_dict>, <class 'botorch.acquisition.acquisition.AcquisitionFunction'>: <function botorch_modular_to_dict>, <class 'gpytorch.likelihoods.likelihood.Likelihood'>: <function botorch_modular_to_dict>, <class 'torch.nn.modules.module.Module'>: <function botorch_modular_to_dict>, <class 'gpytorch.mlls.marginal_log_likelihood.MarginalLogLikelihood'>: <function botorch_modular_to_dict>, <class 'botorch.models.model.Model'>: <function botorch_modular_to_dict>, <class 'ax.modelbridge.transforms.base.Transform'>: <function transform_type_to_dict>}) → None[source]¶ Save experiment to file.
Convert Ax experiment to JSON-serializable dictionary.
Write to file.
SQLAlchemy (MySQL / SQLite)¶
ax.storage.sqa_store.base_decoder module¶
ax.storage.sqa_store.base_encoder module¶
ax.storage.sqa_store.db module¶
-
class
ax.storage.sqa_store.db.
SQABase
[source]¶ Bases:
object
Metaclass for SQLAlchemy classes corresponding to core Ax classes.
-
ax.storage.sqa_store.db.
create_all_tables
(engine: sqlalchemy.engine.base.Engine) → None[source]¶ Create all tables that inherit from Base.
- Parameters
engine – a SQLAlchemy engine with a connection to a MySQL or SQLite DB.
Note
In order for all tables to be correctly created, all modules that define a mapped class that inherits from Base must be imported.
-
ax.storage.sqa_store.db.
create_mysql_engine_from_creator
(creator: Callable, echo: bool = False, pool_recycle: int = 10, **kwargs: Any) → sqlalchemy.engine.base.Engine[source]¶ Create a SQLAlchemy engine with the MySQL dialect given a creator function.
- Parameters
creator – a callable which returns a DBAPI connection.
echo – if True, set engine to be verbose.
pool_recycle – number of seconds after which to recycle connections. -1 means no timeout. Default is 10 seconds.
**kwargs – keyword args passed to create_engine
- Returns
SQLAlchemy engine with connection to MySQL DB.
- Return type
Engine
-
ax.storage.sqa_store.db.
create_mysql_engine_from_url
(url: str, echo: bool = False, pool_recycle: int = 10, **kwargs: Any) → sqlalchemy.engine.base.Engine[source]¶ Create a SQLAlchemy engine with the MySQL dialect given a database url.
- Parameters
url – a database url that can include username, password, hostname, database name as well as optional keyword arguments for additional configuration. e.g. dialect+driver://username:password@host:port/database.
echo – if True, set engine to be verbose.
pool_recycle – number of seconds after which to recycle connections. -1 means no timeout. Default is 10 seconds.
**kwargs – keyword args passed to create_engine
- Returns
SQLAlchemy engine with connection to MySQL DB.
- Return type
Engine
-
ax.storage.sqa_store.db.
create_test_engine
(path: Optional[str] = None, echo: bool = True) → sqlalchemy.engine.base.Engine[source]¶ Creates a SQLAlchemy engine object for use in unit tests.
- Parameters
path – if None, use in-memory SQLite; else attempt to create a SQLite DB in the path provided.
echo – if True, set engine to be verbose.
- Returns
an instance of SQLAlchemy engine.
- Return type
Engine
-
ax.storage.sqa_store.db.
get_engine
() → sqlalchemy.engine.base.Engine[source]¶ Fetch a SQLAlchemy engine, if already initialized.
If not initialized, need to either call init_engine_and_session_factory or get_session explicitly.
- Returns
an instance of a SQLAlchemy engine with a connection to a DB.
- Return type
Engine
-
ax.storage.sqa_store.db.
get_session
() → sqlalchemy.orm.session.Session[source]¶ Fetch a SQLAlchemy session with a connection to a DB.
Unless init_engine_and_session_factory is called first with custom args, this will automatically initialize a connection to xdb.adaptive_experiment.
- Returns
an instance of a SQLAlchemy session.
- Return type
Session
-
ax.storage.sqa_store.db.
init_engine_and_session_factory
(url: Optional[str] = None, creator: Optional[Callable] = None, echo: bool = False, force_init: bool = False, **kwargs: Any) → None[source]¶ Initialize the global engine and SESSION_FACTORY for SQLAlchemy.
The initialization needs to only happen once. Note that it is possible to re-initialize the engine by setting the force_init flag to True, but this should only be used if you are absolutely certain that you know what you are doing.
- Parameters
url – a database url that can include username, password, hostname, database name as well as optional keyword arguments for additional configuration. e.g. dialect+driver://username:password@host:port/database. Either this argument or creator argument must be specified.
creator – a callable which returns a DBAPI connection. Either this argument or url argument must be specified.
echo – if True, logging for engine is enabled.
force_init – if True, allows re-initializing engine and session factory.
**kwargs – keyword arguments passed to create_mysql_engine_from_creator
-
ax.storage.sqa_store.db.
init_test_engine_and_session_factory
(tier_or_path: Optional[str] = None, echo: bool = False, force_init: bool = False, **kwargs: Any) → None[source]¶ Initialize the global engine and SESSION_FACTORY for SQLAlchemy, using an in-memory SQLite database.
The initialization needs to only happen once. Note that it is possible to re-initialize the engine by setting the force_init flag to True, but this should only be used if you are absolutely certain that you know what you are doing.
- Parameters
tier_or_path – the name of the DB tier.
echo – if True, logging for engine is enabled.
force_init – if True, allows re-initializing engine and session factory.
**kwargs – keyword arguments passed to create_mysql_engine_from_creator
-
ax.storage.sqa_store.db.
optional_session_scope
(session: Optional[sqlalchemy.orm.session.Session] = None) → AbstractContextManager[sqlalchemy.orm.session.Session][source]¶
ax.storage.sqa_store.delete module¶
ax.storage.sqa_store.json module¶
-
class
ax.storage.sqa_store.json.
JSONEncodedMediumText
(object_pairs_hook: Optional[Any] = None, *args: List[Any], **kwargs: Dict[Any, Any])[source]¶ Bases:
ax.storage.sqa_store.json.JSONEncodedObject
Class for JSON-encoding objects in SQLAlchemy, backed by MEDIUMTEXT (MySQL).
See description in JSONEncodedObject.
-
impl
: sqlalchemy.sql.sqltypes.VARCHAR = Text(length=16777215)¶
-
-
class
ax.storage.sqa_store.json.
JSONEncodedObject
(object_pairs_hook: Optional[Any] = None, *args: List[Any], **kwargs: Dict[Any, Any])[source]¶ Bases:
sqlalchemy.sql.type_api.TypeDecorator
Class for JSON-encoding objects in SQLAlchemy.
Represents an object that is automatically marshalled and unmarshalled to/from the corresponding JSON string. By itself, this data structure does not track any changes.
-
cache_ok
= True¶ Indicate if statements using this
ExternalType
are “safe to cache”.The default value
None
will emit a warning and then not allow caching of a statement which includes this type. Set toFalse
to disable statements using this type from being cached at all without a warning. When set toTrue
, the object’s class and selected elements from its state will be used as part of the cache key. For example, using aTypeDecorator
:class MyType(TypeDecorator): impl = String cache_ok = True def __init__(self, choices): self.choices = tuple(choices) self.internal_only = True
The cache key for the above type would be equivalent to:
>>> MyType(["a", "b", "c"])._static_cache_key (<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))
The caching scheme will extract attributes from the type that correspond to the names of parameters in the
__init__()
method. Above, the “choices” attribute becomes part of the cache key but “internal_only” does not, because there is no parameter named “internal_only”.The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.
To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made “cacheable” by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. this is the non-cacheable version, as "self.lookup" is not hashable. ''' def __init__(self, lookup): self.lookup = lookup def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self.lookup" ...
Where “lookup” is a dictionary. The type will not be able to generate a cache key:
>>> type_ = LookupType({"a": 10, "b": 20}) >>> type_._static_cache_key <stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not produce a cache key because the ``cache_ok`` flag is not set to True. Set this flag to True if this type object's state is safe to use in a cache key, or False to disable this warning. symbol('no_cache')
If we did set up such a cache key, it wouldn’t be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a “cache dictionary” such as SQLAlchemy’s statement cache, since Python dictionaries aren’t hashable:
>>> # set cache_ok = True >>> type_.cache_ok = True >>> # this is the cache key it would generate >>> key = type_._static_cache_key >>> key (<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20})) >>> # however this key is not hashable, will fail when used with >>> # SQLAlchemy statement cache >>> some_cache = {key: "some sql value"} Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unhashable type: 'dict'
The type may be made cacheable by assigning a sorted tuple of tuples to the “.lookup” attribute:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. The dictionary is stored both as itself in a private variable, and published in a public variable as a sorted tuple of tuples, which is hashable and will also return the same value for any two equivalent dictionaries. Note it assumes the keys and values of the dictionary are themselves hashable. ''' cache_ok = True def __init__(self, lookup): self._lookup = lookup # assume keys/values of "lookup" are hashable; otherwise # they would also need to be converted in some way here self.lookup = tuple( (key, lookup[key]) for key in sorted(lookup) ) def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self._lookup" ...
Where above, the cache key for
LookupType({"a": 10, "b": 20})
will be:>>> LookupType({"a": 10, "b": 20})._static_cache_key (<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))
New in version 1.4.14: - added the
cache_ok
flag to allow some configurability of caching forTypeDecorator
classes.New in version 1.4.28: - added the
ExternalType
mixin which generalizes thecache_ok
flag to both theTypeDecorator
andUserDefinedType
classes.See also
sql_caching
-
impl
: sqlalchemy.sql.sqltypes.VARCHAR = VARCHAR(length=4096)¶
-
process_bind_param
(value: Any, dialect: Any) → Optional[str][source]¶ Receive a bound parameter value to be converted.
Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for incoming data values. This method is called at statement execution time and is passed the literal Python data value which is to be associated with a bound parameter in the statement.The operation could be anything desired to perform custom behavior, such as transforming or serializing data. This could also be used as a hook for validating logic.
- Parameters
value – Data to operate upon, of any type expected by this method in the subclass. Can be
None
.dialect – the
Dialect
in use.
See also
types_typedecorator
_types.TypeDecorator.process_result_value()
-
process_result_value
(value: Any, dialect: Any) → Any[source]¶ Receive a result-row column value to be converted.
Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for data values being received in result rows coming from the database. This method is called at result fetching time and is passed the literal Python data value that’s extracted from a database result row.The operation could be anything desired to perform custom behavior, such as transforming or deserializing data.
- Parameters
value – Data to operate upon, of any type expected by this method in the subclass. Can be
None
.dialect – the
Dialect
in use.
See also
types_typedecorator
_types.TypeDecorator.process_bind_param()
-
-
class
ax.storage.sqa_store.json.
JSONEncodedText
(object_pairs_hook: Optional[Any] = None, *args: List[Any], **kwargs: Dict[Any, Any])[source]¶ Bases:
ax.storage.sqa_store.json.JSONEncodedObject
Class for JSON-encoding objects in SQLAlchemy, backed by TEXT (MySQL).
See description in JSONEncodedObject.
-
impl
¶ alias of
sqlalchemy.sql.sqltypes.Text
-
object_pairs_hook
: Any¶
-
ax.storage.sqa_store.load module¶
ax.storage.sqa_store.save module¶
ax.storage.sqa_store.structs module¶
ax.storage.sqa_store.sqa_classes module¶
-
class
ax.storage.sqa_store.sqa_classes.
SQAAbandonedArm
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
time_abandoned
: datetime.datetime = Column(None, IntTimestamp(), table=None, nullable=False, default=ColumnDefault(<function datetime.now>))¶
-
-
class
ax.storage.sqa_store.sqa_classes.
SQAArm
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
class
ax.storage.sqa_store.sqa_classes.
SQAData
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
class
ax.storage.sqa_store.sqa_classes.
SQAExperiment
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
data
: List[ax.storage.sqa_store.sqa_classes.SQAData] = <RelationshipProperty at 0x7ff2bfb1d3b0; no key>¶
-
default_data_type
: ax.core.experiment.DataType = Column(None, IntEnum(), table=None)¶
-
generation_strategy
: Optional[ax.storage.sqa_store.sqa_classes.SQAGenerationStrategy] = <RelationshipProperty at 0x7ff2bfb1d710; no key>¶
-
metrics
: List[ax.storage.sqa_store.sqa_classes.SQAMetric] = <RelationshipProperty at 0x7ff2bfb1d440; no key>¶
-
parameter_constraints
: List[ax.storage.sqa_store.sqa_classes.SQAParameterConstraint] = <RelationshipProperty at 0x7ff2bfb1d560; no key>¶
-
parameters
: List[ax.storage.sqa_store.sqa_classes.SQAParameter] = <RelationshipProperty at 0x7ff2bfb1d4d0; no key>¶
-
properties
: Optional[Dict[str, Any]] = Column(None, JSONEncodedText(), table=None, default=ColumnDefault({}))¶
-
runners
: List[ax.storage.sqa_store.sqa_classes.SQARunner] = <RelationshipProperty at 0x7ff2bfb1d5f0; no key>¶
-
status_quo_parameters
: Optional[Dict[str, Optional[Union[str, bool, float, int]]]] = Column(None, JSONEncodedText(), table=None)¶
-
time_created
: datetime.datetime = Column(None, IntTimestamp(), table=None, nullable=False)¶
-
trials
: List[ax.storage.sqa_store.sqa_classes.SQATrial] = <RelationshipProperty at 0x7ff2bfb1d680; no key>¶
-
-
class
ax.storage.sqa_store.sqa_classes.
SQAGenerationStrategy
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
generator_runs
: List[ax.storage.sqa_store.sqa_classes.SQAGeneratorRun] = <RelationshipProperty at 0x7ff2bfb0b050; no key>¶
-
-
class
ax.storage.sqa_store.sqa_classes.
SQAGeneratorRun
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
arms
: List[ax.storage.sqa_store.sqa_classes.SQAArm] = <RelationshipProperty at 0x7ff2bfaf2950; no key>¶
-
best_arm_parameters
: Optional[Dict[str, Optional[Union[str, bool, float, int]]]] = Column(None, JSONEncodedText(), table=None)¶
-
best_arm_predictions
: Optional[Tuple[Dict[str, float], Optional[Dict[str, Dict[str, float]]]]] = Column(None, JSONEncodedObject(length=4096), table=None)¶
-
candidate_metadata_by_arm_signature
: Optional[Dict[str, Any]] = Column(None, JSONEncodedText(), table=None)¶
-
generation_strategy_id
: Optional[int] = Column(None, Integer(), ForeignKey('generation_strategy.id'), table=None)¶
-
metrics
: List[ax.storage.sqa_store.sqa_classes.SQAMetric] = <RelationshipProperty at 0x7ff2bfc23c20; no key>¶
-
model_predictions
: Optional[Tuple[Dict[str, List[float]], Dict[str, Dict[str, List[float]]]]] = Column(None, JSONEncodedObject(length=4096), table=None)¶
-
parameter_constraints
: List[ax.storage.sqa_store.sqa_classes.SQAParameterConstraint] = <RelationshipProperty at 0x7ff2bfaf2cb0; no key>¶
-
parameters
: List[ax.storage.sqa_store.sqa_classes.SQAParameter] = <RelationshipProperty at 0x7ff2bfaf2c20; no key>¶
-
time_created
: datetime.datetime = Column(None, IntTimestamp(), table=None, nullable=False, default=ColumnDefault(<function datetime.now>))¶
-
-
class
ax.storage.sqa_store.sqa_classes.
SQAMetric
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
generator_run_id
: Optional[int] = Column(None, Integer(), ForeignKey('generator_run_v2.id'), table=None)¶
-
intent
: ax.storage.utils.MetricIntent = Column(None, StringEnum(length=100), table=None, nullable=False)¶
-
op
: Optional[ax.core.types.ComparisonOp] = Column(None, IntEnum(), table=None)¶
-
properties
: Optional[Dict[str, Any]] = Column(None, JSONEncodedText(), table=None, default=ColumnDefault({}))¶
-
scalarized_objective_children_metrics
= <RelationshipProperty at 0x7ff2bfc23e60; no key>¶
-
scalarized_objective_id
= Column(None, Integer(), ForeignKey('metric_v2.id'), table=None)¶
-
scalarized_outcome_constraint_children_metrics
= <RelationshipProperty at 0x7ff2bfaf2200; no key>¶
-
scalarized_outcome_constraint_id
= Column(None, Integer(), ForeignKey('metric_v2.id'), table=None)¶
-
-
class
ax.storage.sqa_store.sqa_classes.
SQAParameter
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
choice_values
: Optional[List[Optional[Union[str, bool, float, int]]]] = Column(None, JSONEncodedObject(length=4096), table=None)¶
-
domain_type
: ax.storage.utils.DomainType = Column(None, IntEnum(), table=None, nullable=False)¶
-
fixed_value
: Optional[Union[str, bool, float, int]] = Column(None, JSONEncodedObject(length=4096), table=None)¶
-
generator_run_id
: Optional[int] = Column(None, Integer(), ForeignKey('generator_run_v2.id'), table=None)¶
-
parameter_type
: ax.core.parameter.ParameterType = Column(None, IntEnum(), table=None, nullable=False)¶
-
-
class
ax.storage.sqa_store.sqa_classes.
SQAParameterConstraint
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
constraint_dict
: Dict[str, float] = Column(None, JSONEncodedObject(length=4096), table=None, nullable=False)¶
-
generator_run_id
: Optional[int] = Column(None, Integer(), ForeignKey('generator_run_v2.id'), table=None)¶
-
type
: ax.storage.sqa_store.sqa_enum.IntEnum = Column(None, IntEnum(), table=None, nullable=False)¶
-
-
class
ax.storage.sqa_store.sqa_classes.
SQARunner
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
class
ax.storage.sqa_store.sqa_classes.
SQATrial
(*args: Any, **kwargs: Any)[source]¶ Bases:
sqlalchemy.ext.declarative.
-
abandoned_arms
: List[ax.storage.sqa_store.sqa_classes.SQAAbandonedArm] = <RelationshipProperty at 0x7ff2bfb0be60; no key>¶
-
generator_runs
: List[ax.storage.sqa_store.sqa_classes.SQAGeneratorRun] = <RelationshipProperty at 0x7ff2bfb0bef0; no key>¶
-
is_batch
: bool = Column('is_batched', Boolean(), table=None, nullable=False, default=ColumnDefault(True))¶
-
lifecycle_stage
: ax.core.batch_trial.LifecycleStage = Column(None, IntEnum(), table=None)¶
-
num_arms_created
: int = Column(None, Integer(), table=None, nullable=False, default=ColumnDefault(0))¶
-
properties
: Optional[Dict[str, Any]] = Column(None, JSONEncodedText(), table=None, default=ColumnDefault({}))¶
-
runner
: ax.storage.sqa_store.sqa_classes.SQARunner = <RelationshipProperty at 0x7ff2bfb0bf80; no key>¶
-
status
: ax.core.base_trial.TrialStatus = Column(None, IntEnum(), table=None, nullable=False, default=ColumnDefault(<TrialStatus.CANDIDATE: 0>))¶
-
time_completed
: Optional[datetime.datetime] = Column(None, IntTimestamp(), table=None)¶
-
time_created
: datetime.datetime = Column(None, IntTimestamp(), table=None, nullable=False)¶
-
time_run_started
: Optional[datetime.datetime] = Column(None, IntTimestamp(), table=None)¶
-
time_staged
: Optional[datetime.datetime] = Column(None, IntTimestamp(), table=None)¶
-
ax.storage.sqa_store.sqa_config module¶
ax.storage.sqa_store.sqa_enum module¶
-
class
ax.storage.sqa_store.sqa_enum.
BaseNullableEnum
(enum: Any, *arg: List[Any], **kw: Dict[Any, Any])[source]¶ Bases:
sqlalchemy.sql.type_api.TypeDecorator
-
cache_ok
= True¶ Indicate if statements using this
ExternalType
are “safe to cache”.The default value
None
will emit a warning and then not allow caching of a statement which includes this type. Set toFalse
to disable statements using this type from being cached at all without a warning. When set toTrue
, the object’s class and selected elements from its state will be used as part of the cache key. For example, using aTypeDecorator
:class MyType(TypeDecorator): impl = String cache_ok = True def __init__(self, choices): self.choices = tuple(choices) self.internal_only = True
The cache key for the above type would be equivalent to:
>>> MyType(["a", "b", "c"])._static_cache_key (<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))
The caching scheme will extract attributes from the type that correspond to the names of parameters in the
__init__()
method. Above, the “choices” attribute becomes part of the cache key but “internal_only” does not, because there is no parameter named “internal_only”.The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.
To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made “cacheable” by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. this is the non-cacheable version, as "self.lookup" is not hashable. ''' def __init__(self, lookup): self.lookup = lookup def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self.lookup" ...
Where “lookup” is a dictionary. The type will not be able to generate a cache key:
>>> type_ = LookupType({"a": 10, "b": 20}) >>> type_._static_cache_key <stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not produce a cache key because the ``cache_ok`` flag is not set to True. Set this flag to True if this type object's state is safe to use in a cache key, or False to disable this warning. symbol('no_cache')
If we did set up such a cache key, it wouldn’t be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a “cache dictionary” such as SQLAlchemy’s statement cache, since Python dictionaries aren’t hashable:
>>> # set cache_ok = True >>> type_.cache_ok = True >>> # this is the cache key it would generate >>> key = type_._static_cache_key >>> key (<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20})) >>> # however this key is not hashable, will fail when used with >>> # SQLAlchemy statement cache >>> some_cache = {key: "some sql value"} Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unhashable type: 'dict'
The type may be made cacheable by assigning a sorted tuple of tuples to the “.lookup” attribute:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. The dictionary is stored both as itself in a private variable, and published in a public variable as a sorted tuple of tuples, which is hashable and will also return the same value for any two equivalent dictionaries. Note it assumes the keys and values of the dictionary are themselves hashable. ''' cache_ok = True def __init__(self, lookup): self._lookup = lookup # assume keys/values of "lookup" are hashable; otherwise # they would also need to be converted in some way here self.lookup = tuple( (key, lookup[key]) for key in sorted(lookup) ) def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self._lookup" ...
Where above, the cache key for
LookupType({"a": 10, "b": 20})
will be:>>> LookupType({"a": 10, "b": 20})._static_cache_key (<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))
New in version 1.4.14: - added the
cache_ok
flag to allow some configurability of caching forTypeDecorator
classes.New in version 1.4.28: - added the
ExternalType
mixin which generalizes thecache_ok
flag to both theTypeDecorator
andUserDefinedType
classes.See also
sql_caching
-
process_bind_param
(value: Any, dialect: Any) → Any[source]¶ Receive a bound parameter value to be converted.
Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for incoming data values. This method is called at statement execution time and is passed the literal Python data value which is to be associated with a bound parameter in the statement.The operation could be anything desired to perform custom behavior, such as transforming or serializing data. This could also be used as a hook for validating logic.
- Parameters
value – Data to operate upon, of any type expected by this method in the subclass. Can be
None
.dialect – the
Dialect
in use.
See also
types_typedecorator
_types.TypeDecorator.process_result_value()
-
process_result_value
(value: Any, dialect: Any) → Any[source]¶ Receive a result-row column value to be converted.
Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for data values being received in result rows coming from the database. This method is called at result fetching time and is passed the literal Python data value that’s extracted from a database result row.The operation could be anything desired to perform custom behavior, such as transforming or deserializing data.
- Parameters
value – Data to operate upon, of any type expected by this method in the subclass. Can be
None
.dialect – the
Dialect
in use.
See also
types_typedecorator
_types.TypeDecorator.process_bind_param()
-
-
class
ax.storage.sqa_store.sqa_enum.
IntEnum
(enum: Any, *arg: List[Any], **kw: Dict[Any, Any])[source]¶ Bases:
ax.storage.sqa_store.sqa_enum.BaseNullableEnum
-
impl
¶ alias of
sqlalchemy.sql.sqltypes.SmallInteger
-
-
class
ax.storage.sqa_store.sqa_enum.
StringEnum
(enum: Any, *arg: List[Any], **kw: Dict[Any, Any])[source]¶ Bases:
ax.storage.sqa_store.sqa_enum.BaseNullableEnum
-
impl
= VARCHAR(length=100)¶
-
ax.storage.sqa_store.timestamp module¶
-
class
ax.storage.sqa_store.timestamp.
IntTimestamp
(*args, **kwargs)[source]¶ Bases:
sqlalchemy.sql.type_api.TypeDecorator
-
cache_ok
= True¶ Indicate if statements using this
ExternalType
are “safe to cache”.The default value
None
will emit a warning and then not allow caching of a statement which includes this type. Set toFalse
to disable statements using this type from being cached at all without a warning. When set toTrue
, the object’s class and selected elements from its state will be used as part of the cache key. For example, using aTypeDecorator
:class MyType(TypeDecorator): impl = String cache_ok = True def __init__(self, choices): self.choices = tuple(choices) self.internal_only = True
The cache key for the above type would be equivalent to:
>>> MyType(["a", "b", "c"])._static_cache_key (<class '__main__.MyType'>, ('choices', ('a', 'b', 'c')))
The caching scheme will extract attributes from the type that correspond to the names of parameters in the
__init__()
method. Above, the “choices” attribute becomes part of the cache key but “internal_only” does not, because there is no parameter named “internal_only”.The requirements for cacheable elements is that they are hashable and also that they indicate the same SQL rendered for expressions using this type every time for a given cache value.
To accommodate for datatypes that refer to unhashable structures such as dictionaries, sets and lists, these objects can be made “cacheable” by assigning hashable structures to the attributes whose names correspond with the names of the arguments. For example, a datatype which accepts a dictionary of lookup values may publish this as a sorted series of tuples. Given a previously un-cacheable type as:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. this is the non-cacheable version, as "self.lookup" is not hashable. ''' def __init__(self, lookup): self.lookup = lookup def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self.lookup" ...
Where “lookup” is a dictionary. The type will not be able to generate a cache key:
>>> type_ = LookupType({"a": 10, "b": 20}) >>> type_._static_cache_key <stdin>:1: SAWarning: UserDefinedType LookupType({'a': 10, 'b': 20}) will not produce a cache key because the ``cache_ok`` flag is not set to True. Set this flag to True if this type object's state is safe to use in a cache key, or False to disable this warning. symbol('no_cache')
If we did set up such a cache key, it wouldn’t be usable. We would get a tuple structure that contains a dictionary inside of it, which cannot itself be used as a key in a “cache dictionary” such as SQLAlchemy’s statement cache, since Python dictionaries aren’t hashable:
>>> # set cache_ok = True >>> type_.cache_ok = True >>> # this is the cache key it would generate >>> key = type_._static_cache_key >>> key (<class '__main__.LookupType'>, ('lookup', {'a': 10, 'b': 20})) >>> # however this key is not hashable, will fail when used with >>> # SQLAlchemy statement cache >>> some_cache = {key: "some sql value"} Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: unhashable type: 'dict'
The type may be made cacheable by assigning a sorted tuple of tuples to the “.lookup” attribute:
class LookupType(UserDefinedType): '''a custom type that accepts a dictionary as a parameter. The dictionary is stored both as itself in a private variable, and published in a public variable as a sorted tuple of tuples, which is hashable and will also return the same value for any two equivalent dictionaries. Note it assumes the keys and values of the dictionary are themselves hashable. ''' cache_ok = True def __init__(self, lookup): self._lookup = lookup # assume keys/values of "lookup" are hashable; otherwise # they would also need to be converted in some way here self.lookup = tuple( (key, lookup[key]) for key in sorted(lookup) ) def get_col_spec(self, **kw): return "VARCHAR(255)" def bind_processor(self, dialect): # ... works with "self._lookup" ...
Where above, the cache key for
LookupType({"a": 10, "b": 20})
will be:>>> LookupType({"a": 10, "b": 20})._static_cache_key (<class '__main__.LookupType'>, ('lookup', (('a', 10), ('b', 20))))
New in version 1.4.14: - added the
cache_ok
flag to allow some configurability of caching forTypeDecorator
classes.New in version 1.4.28: - added the
ExternalType
mixin which generalizes thecache_ok
flag to both theTypeDecorator
andUserDefinedType
classes.See also
sql_caching
-
impl
¶ alias of
sqlalchemy.sql.sqltypes.Integer
-
process_bind_param
(value: Optional[datetime.datetime], dialect: sqlalchemy.engine.interfaces.Dialect) → Optional[int][source]¶ Receive a bound parameter value to be converted.
Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for incoming data values. This method is called at statement execution time and is passed the literal Python data value which is to be associated with a bound parameter in the statement.The operation could be anything desired to perform custom behavior, such as transforming or serializing data. This could also be used as a hook for validating logic.
- Parameters
value – Data to operate upon, of any type expected by this method in the subclass. Can be
None
.dialect – the
Dialect
in use.
See also
types_typedecorator
_types.TypeDecorator.process_result_value()
-
process_result_value
(value: Optional[int], dialect: sqlalchemy.engine.interfaces.Dialect) → Optional[datetime.datetime][source]¶ Receive a result-row column value to be converted.
Custom subclasses of
_types.TypeDecorator
should override this method to provide custom behaviors for data values being received in result rows coming from the database. This method is called at result fetching time and is passed the literal Python data value that’s extracted from a database result row.The operation could be anything desired to perform custom behavior, such as transforming or deserializing data.
- Parameters
value – Data to operate upon, of any type expected by this method in the subclass. Can be
None
.dialect – the
Dialect
in use.
See also
types_typedecorator
_types.TypeDecorator.process_bind_param()
-
ax.storage.sqa_store.utils module¶
ax.storage.sqa_store.validation module¶
ax.storage.sqa_store.reduced_state module¶
-
ax.storage.sqa_store.reduced_state.
get_query_options_to_defer_immutable_duplicates
() → List[sqlalchemy.orm.strategy_options.Load][source]¶ Returns the query options that defer loading of attributes that are duplicated on each trial (like search space attributes and metrics). These attributes do not need to be loaded for experiments with immutable search space and optimization configuration.
-
ax.storage.sqa_store.reduced_state.
get_query_options_to_defer_large_model_cols
() → List[sqlalchemy.orm.strategy_options.Load][source]¶ Returns the query options that defer loading of model-state-related columns of generator runs, which can be large and are not needed on every generator run when loading experiment and generation strategy in reduced state.
Registries¶
-
ax.storage.botorch_modular_registry.
ACQUISITION_FUNCTION_REGISTRY
: Dict[Type[botorch.acquisition.acquisition.AcquisitionFunction], str] = {<class 'botorch.acquisition.analytic.ExpectedImprovement'>: 'ExpectedImprovement', <class 'botorch.acquisition.multi_objective.monte_carlo.qExpectedHypervolumeImprovement'>: 'qExpectedHypervolumeImprovement', <class 'botorch.acquisition.multi_objective.monte_carlo.qNoisyExpectedHypervolumeImprovement'>: 'qNoisyExpectedHypervolumeImprovement', <class 'botorch.acquisition.monte_carlo.qExpectedImprovement'>: 'qExpectedImprovement', <class 'botorch.acquisition.knowledge_gradient.qKnowledgeGradient'>: 'qKnowledgeGradient', <class 'botorch.acquisition.max_value_entropy_search.qMaxValueEntropy'>: 'qMaxValueEntropy', <class 'botorch.acquisition.knowledge_gradient.qMultiFidelityKnowledgeGradient'>: 'qMultiFidelityKnowledgeGradient', <class 'botorch.acquisition.max_value_entropy_search.qMultiFidelityMaxValueEntropy'>: 'qMultiFidelityMaxValueEntropy', <class 'botorch.acquisition.monte_carlo.qNoisyExpectedImprovement'>: 'qNoisyExpectedImprovement'}¶ Mapping of BoTorch MarginalLogLikelihood classes to class name strings.
-
ax.storage.botorch_modular_registry.
ACQUISITION_REGISTRY
: Dict[Type[ax.models.torch.botorch_modular.acquisition.Acquisition], str] = {<class 'ax.models.torch.botorch_modular.acquisition.Acquisition'>: 'Acquisition'}¶ Mapping of BoTorch Model classes to class name strings.
-
ax.storage.botorch_modular_registry.
CLASS_TO_REGISTRY
: Dict[Any, Dict[Type[Any], str]] = {<class 'ax.models.torch.botorch_modular.acquisition.Acquisition'>: {<class 'ax.models.torch.botorch_modular.acquisition.Acquisition'>: 'Acquisition'}, <class 'botorch.acquisition.acquisition.AcquisitionFunction'>: {<class 'botorch.acquisition.analytic.ExpectedImprovement'>: 'ExpectedImprovement', <class 'botorch.acquisition.multi_objective.monte_carlo.qExpectedHypervolumeImprovement'>: 'qExpectedHypervolumeImprovement', <class 'botorch.acquisition.multi_objective.monte_carlo.qNoisyExpectedHypervolumeImprovement'>: 'qNoisyExpectedHypervolumeImprovement', <class 'botorch.acquisition.monte_carlo.qExpectedImprovement'>: 'qExpectedImprovement', <class 'botorch.acquisition.knowledge_gradient.qKnowledgeGradient'>: 'qKnowledgeGradient', <class 'botorch.acquisition.max_value_entropy_search.qMaxValueEntropy'>: 'qMaxValueEntropy', <class 'botorch.acquisition.knowledge_gradient.qMultiFidelityKnowledgeGradient'>: 'qMultiFidelityKnowledgeGradient', <class 'botorch.acquisition.max_value_entropy_search.qMultiFidelityMaxValueEntropy'>: 'qMultiFidelityMaxValueEntropy', <class 'botorch.acquisition.monte_carlo.qNoisyExpectedImprovement'>: 'qNoisyExpectedImprovement'}, <class 'gpytorch.likelihoods.likelihood.Likelihood'>: {<class 'gpytorch.likelihoods.gaussian_likelihood.GaussianLikelihood'>: 'GaussianLikelihood'}, <class 'gpytorch.mlls.marginal_log_likelihood.MarginalLogLikelihood'>: {<class 'gpytorch.mlls.exact_marginal_log_likelihood.ExactMarginalLogLikelihood'>: 'ExactMarginalLogLikelihood', <class 'gpytorch.mlls.leave_one_out_pseudo_likelihood.LeaveOneOutPseudoLikelihood'>: 'LeaveOneOutPseudoLikelihood', <class 'gpytorch.mlls.sum_marginal_log_likelihood.SumMarginalLogLikelihood'>: 'SumMarginalLogLikelihood'}, <class 'botorch.models.model.Model'>: {<class 'botorch.models.gp_regression.FixedNoiseGP'>: 'FixedNoiseGP', <class 'botorch.models.gp_regression_fidelity.FixedNoiseMultiFidelityGP'>: 'FixedNoiseMultiFidelityGP', <class 'botorch.models.multitask.FixedNoiseMultiTaskGP'>: 'FixedNoiseMultiTaskGP', <class 'botorch.models.gp_regression_mixed.MixedSingleTaskGP'>: 'MixedSingleTaskGP', <class 'botorch.models.model_list_gp_regression.ModelListGP'>: 'ModelListGP', <class 'botorch.models.multitask.MultiTaskGP'>: 'MultiTaskGP', <class 'botorch.models.gp_regression.SingleTaskGP'>: 'SingleTaskGP', <class 'botorch.models.gp_regression_fidelity.SingleTaskMultiFidelityGP'>: 'SingleTaskMultiFidelityGP'}, <class 'gpytorch.constraints.constraints.Interval'>: {<class 'gpytorch.constraints.constraints.Interval'>: 'Interval', <class 'gpytorch.priors.torch_priors.GammaPrior'>: 'GammaPrior'}, <class 'gpytorch.priors.torch_priors.GammaPrior'>: {<class 'gpytorch.constraints.constraints.Interval'>: 'Interval', <class 'gpytorch.priors.torch_priors.GammaPrior'>: 'GammaPrior'}}¶ Reverse registries for decoding.
-
ax.storage.botorch_modular_registry.
GPYTORCH_COMPONENT_REGISTRY
: Dict[Type[torch.nn.modules.module.Module], str] = {<class 'gpytorch.constraints.constraints.Interval'>: 'Interval', <class 'gpytorch.priors.torch_priors.GammaPrior'>: 'GammaPrior'}¶ Overarching mapping from encoded classes to registry map.
-
ax.storage.botorch_modular_registry.
MODEL_REGISTRY
: Dict[Type[botorch.models.model.Model], str] = {<class 'botorch.models.gp_regression.FixedNoiseGP'>: 'FixedNoiseGP', <class 'botorch.models.gp_regression_fidelity.FixedNoiseMultiFidelityGP'>: 'FixedNoiseMultiFidelityGP', <class 'botorch.models.multitask.FixedNoiseMultiTaskGP'>: 'FixedNoiseMultiTaskGP', <class 'botorch.models.gp_regression_mixed.MixedSingleTaskGP'>: 'MixedSingleTaskGP', <class 'botorch.models.model_list_gp_regression.ModelListGP'>: 'ModelListGP', <class 'botorch.models.multitask.MultiTaskGP'>: 'MultiTaskGP', <class 'botorch.models.gp_regression.SingleTaskGP'>: 'SingleTaskGP', <class 'botorch.models.gp_regression_fidelity.SingleTaskMultiFidelityGP'>: 'SingleTaskMultiFidelityGP'}¶ Mapping of Botorch AcquisitionFunction classes to class name strings.
-
ax.storage.botorch_modular_registry.
REVERSE_GPYTORCH_COMPONENT_REGISTRY
: Dict[str, Type[torch.nn.modules.module.Module]] = {'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>}¶ Overarching mapping from encoded classes to reverse registry map.
-
ax.storage.botorch_modular_registry.
register_acquisition
(acq_class: Type[ax.models.torch.botorch_modular.acquisition.Acquisition]) → None[source]¶ Add a custom acquisition class to the SQA and JSON registries.
-
ax.storage.botorch_modular_registry.
register_acquisition_function
(acqf_class: Type[botorch.acquisition.acquisition.AcquisitionFunction]) → None[source]¶ Add a custom acquisition class to the SQA and JSON registries.
-
ax.storage.metric_registry.
WARNING_MSG
= 'There have been some recent changes to `register_metric`. Please see https://ax.dev/tutorials/gpei_hartmann_developer.html#9.-Save-to-JSON-or-SQL for the most up-to-date information on saving custom metrics.'¶ Mapping of Metric classes to ints.
All metrics will be stored in the same table in the database. When saving, we look up the metric subclass in METRIC_REGISTRY, and store the corresponding type field in the database.
-
ax.storage.metric_registry.
register_metric
(metric_cls: Type[ax.core.metric.Metric], metric_registry: Optional[Dict[Type[ax.core.metric.Metric], int]] = None, encoder_registry: Dict[Type, Callable[[Any], Dict[str, Any]]] = {<class 'ax.core.arm.Arm'>: <function arm_to_dict>, <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.metrics.branin.AugmentedBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>: <function metric_to_dict>, <class 'ax.core.batch_trial.BatchTrial'>: <function batch_to_dict>, <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>: <function botorch_model_to_dict>, <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>: <function metric_to_dict>, <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>: <function runner_to_dict>, <class 'ax.metrics.branin.BraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.ChoiceParameter'>: <function choice_parameter_to_dict>, <class 'ax.core.data.Data'>: <function data_to_dict>, <class 'ax.core.experiment.Experiment'>: <function experiment_to_dict>, <class 'ax.metrics.factorial.FactorialMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.FixedParameter'>: <function fixed_parameter_to_dict>, <class 'gpytorch.priors.torch_priors.GammaPrior'>: <function botorch_component_to_dict>, <class 'ax.modelbridge.generation_node.GenerationStep'>: <function generation_step_to_dict>, <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>: <function generation_strategy_to_dict>, <class 'ax.core.generator_run.GeneratorRun'>: <function generator_run_to_dict>, <class 'ax.metrics.hartmann6.Hartmann6Metric'>: <function metric_to_dict>, <class 'gpytorch.constraints.constraints.Interval'>: <function botorch_component_to_dict>, <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>: <function surrogate_to_dict>, <class 'ax.metrics.l2norm.L2NormMetric'>: <function metric_to_dict>, <class 'ax.core.map_data.MapData'>: <function map_data_to_dict>, <class 'ax.core.map_data.MapKeyInfo'>: <function map_key_info_to_dict>, <class 'ax.core.map_metric.MapMetric'>: <function metric_to_dict>, <class 'ax.core.metric.Metric'>: <function metric_to_dict>, <class 'ax.core.objective.MultiObjective'>: <function multi_objective_to_dict>, <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>: <function multi_objective_optimization_config_to_dict>, <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>: <function multi_type_experiment_to_dict>, <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>: <function percentile_early_stopping_strategy_to_dict>, <class 'ax.metrics.sklearn.SklearnMetric'>: <function metric_to_dict>, <class 'ax.metrics.chemistry.ChemistryMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin.NegativeBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>: <function metric_to_dict>, <class 'ax.core.objective.Objective'>: <function objective_to_dict>, <class 'ax.core.outcome_constraint.ObjectiveThreshold'>: <function outcome_constraint_to_dict>, <class 'ax.core.optimization_config.OptimizationConfig'>: <function optimization_config_to_dict>, <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.core.parameter_constraint.OrderConstraint'>: <function order_parameter_constraint_to_dict>, <class 'ax.core.outcome_constraint.OutcomeConstraint'>: <function outcome_constraint_to_dict>, <class 'ax.core.parameter_constraint.ParameterConstraint'>: <function parameter_constraint_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>: <function pytorch_cnn_torchvision_benchmark_problem_to_dict>, <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>: <function metric_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>: <function runner_to_dict>, <class 'ax.core.parameter.RangeParameter'>: <function range_parameter_to_dict>, <class 'ax.core.objective.ScalarizedObjective'>: <function scalarized_objective_to_dict>, <class 'ax.core.search_space.SearchSpace'>: <function search_space_to_dict>, <class 'ax.core.search_space.HierarchicalSearchSpace'>: <function search_space_to_dict>, <class 'ax.core.parameter_constraint.SumConstraint'>: <function sum_parameter_constraint_to_dict>, <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>: <function surrogate_to_dict>, <class 'ax.runners.synthetic.SyntheticRunner'>: <function runner_to_dict>, <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>: <function threshold_early_stopping_strategy_to_dict>, <class 'ax.core.trial.Trial'>: <function trial_to_dict>, <class 'ax.core.observation.ObservationFeatures'>: <function observation_features_to_dict>, <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>: <function winsorization_config_to_dict>}, decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, val: Optional[int] = None) → Tuple[Dict[Type[ax.core.metric.Metric], int], Dict[Type, Callable[[Any], Dict[str, Any]]], Dict[str, Type]][source]¶ Add a custom metric class to the SQA and JSON registries. For the SQA registry, if no int is specified, use a hash of the class name.
-
ax.storage.metric_registry.
register_metrics
(metric_clss: Dict[Type[ax.core.metric.Metric], Optional[int]], metric_registry: Optional[Dict[Type[ax.core.metric.Metric], int]] = None, encoder_registry: Dict[Type, Callable[[Any], Dict[str, Any]]] = {<class 'ax.core.arm.Arm'>: <function arm_to_dict>, <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.metrics.branin.AugmentedBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>: <function metric_to_dict>, <class 'ax.core.batch_trial.BatchTrial'>: <function batch_to_dict>, <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>: <function botorch_model_to_dict>, <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>: <function metric_to_dict>, <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>: <function runner_to_dict>, <class 'ax.metrics.branin.BraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.ChoiceParameter'>: <function choice_parameter_to_dict>, <class 'ax.core.data.Data'>: <function data_to_dict>, <class 'ax.core.experiment.Experiment'>: <function experiment_to_dict>, <class 'ax.metrics.factorial.FactorialMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.FixedParameter'>: <function fixed_parameter_to_dict>, <class 'gpytorch.priors.torch_priors.GammaPrior'>: <function botorch_component_to_dict>, <class 'ax.modelbridge.generation_node.GenerationStep'>: <function generation_step_to_dict>, <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>: <function generation_strategy_to_dict>, <class 'ax.core.generator_run.GeneratorRun'>: <function generator_run_to_dict>, <class 'ax.metrics.hartmann6.Hartmann6Metric'>: <function metric_to_dict>, <class 'gpytorch.constraints.constraints.Interval'>: <function botorch_component_to_dict>, <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>: <function surrogate_to_dict>, <class 'ax.metrics.l2norm.L2NormMetric'>: <function metric_to_dict>, <class 'ax.core.map_data.MapData'>: <function map_data_to_dict>, <class 'ax.core.map_data.MapKeyInfo'>: <function map_key_info_to_dict>, <class 'ax.core.map_metric.MapMetric'>: <function metric_to_dict>, <class 'ax.core.metric.Metric'>: <function metric_to_dict>, <class 'ax.core.objective.MultiObjective'>: <function multi_objective_to_dict>, <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>: <function multi_objective_optimization_config_to_dict>, <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>: <function multi_type_experiment_to_dict>, <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>: <function percentile_early_stopping_strategy_to_dict>, <class 'ax.metrics.sklearn.SklearnMetric'>: <function metric_to_dict>, <class 'ax.metrics.chemistry.ChemistryMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin.NegativeBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>: <function metric_to_dict>, <class 'ax.core.objective.Objective'>: <function objective_to_dict>, <class 'ax.core.outcome_constraint.ObjectiveThreshold'>: <function outcome_constraint_to_dict>, <class 'ax.core.optimization_config.OptimizationConfig'>: <function optimization_config_to_dict>, <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.core.parameter_constraint.OrderConstraint'>: <function order_parameter_constraint_to_dict>, <class 'ax.core.outcome_constraint.OutcomeConstraint'>: <function outcome_constraint_to_dict>, <class 'ax.core.parameter_constraint.ParameterConstraint'>: <function parameter_constraint_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>: <function pytorch_cnn_torchvision_benchmark_problem_to_dict>, <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>: <function metric_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>: <function runner_to_dict>, <class 'ax.core.parameter.RangeParameter'>: <function range_parameter_to_dict>, <class 'ax.core.objective.ScalarizedObjective'>: <function scalarized_objective_to_dict>, <class 'ax.core.search_space.SearchSpace'>: <function search_space_to_dict>, <class 'ax.core.search_space.HierarchicalSearchSpace'>: <function search_space_to_dict>, <class 'ax.core.parameter_constraint.SumConstraint'>: <function sum_parameter_constraint_to_dict>, <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>: <function surrogate_to_dict>, <class 'ax.runners.synthetic.SyntheticRunner'>: <function runner_to_dict>, <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>: <function threshold_early_stopping_strategy_to_dict>, <class 'ax.core.trial.Trial'>: <function trial_to_dict>, <class 'ax.core.observation.ObservationFeatures'>: <function observation_features_to_dict>, <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>: <function winsorization_config_to_dict>}, decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}) → Tuple[Dict[Type[ax.core.metric.Metric], int], Dict[Type, Callable[[Any], Dict[str, Any]]], Dict[str, Type]][source]¶ Add custom metric classes to the SQA and JSON registries. For the SQA registry, if no int is specified, use a hash of the class name.
-
ax.storage.runner_registry.
register_runner
(runner_cls: Type[ax.core.runner.Runner], runner_registry: Dict[Type[ax.core.runner.Runner], int] = {<class 'ax.runners.synthetic.SyntheticRunner'>: 0}, encoder_registry: Dict[Type, Callable[[Any], Dict[str, Any]]] = {<class 'ax.core.arm.Arm'>: <function arm_to_dict>, <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.metrics.branin.AugmentedBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>: <function metric_to_dict>, <class 'ax.core.batch_trial.BatchTrial'>: <function batch_to_dict>, <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>: <function botorch_model_to_dict>, <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>: <function metric_to_dict>, <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>: <function runner_to_dict>, <class 'ax.metrics.branin.BraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.ChoiceParameter'>: <function choice_parameter_to_dict>, <class 'ax.core.data.Data'>: <function data_to_dict>, <class 'ax.core.experiment.Experiment'>: <function experiment_to_dict>, <class 'ax.metrics.factorial.FactorialMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.FixedParameter'>: <function fixed_parameter_to_dict>, <class 'gpytorch.priors.torch_priors.GammaPrior'>: <function botorch_component_to_dict>, <class 'ax.modelbridge.generation_node.GenerationStep'>: <function generation_step_to_dict>, <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>: <function generation_strategy_to_dict>, <class 'ax.core.generator_run.GeneratorRun'>: <function generator_run_to_dict>, <class 'ax.metrics.hartmann6.Hartmann6Metric'>: <function metric_to_dict>, <class 'gpytorch.constraints.constraints.Interval'>: <function botorch_component_to_dict>, <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>: <function surrogate_to_dict>, <class 'ax.metrics.l2norm.L2NormMetric'>: <function metric_to_dict>, <class 'ax.core.map_data.MapData'>: <function map_data_to_dict>, <class 'ax.core.map_data.MapKeyInfo'>: <function map_key_info_to_dict>, <class 'ax.core.map_metric.MapMetric'>: <function metric_to_dict>, <class 'ax.core.metric.Metric'>: <function metric_to_dict>, <class 'ax.core.objective.MultiObjective'>: <function multi_objective_to_dict>, <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>: <function multi_objective_optimization_config_to_dict>, <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>: <function multi_type_experiment_to_dict>, <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>: <function percentile_early_stopping_strategy_to_dict>, <class 'ax.metrics.sklearn.SklearnMetric'>: <function metric_to_dict>, <class 'ax.metrics.chemistry.ChemistryMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin.NegativeBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>: <function metric_to_dict>, <class 'ax.core.objective.Objective'>: <function objective_to_dict>, <class 'ax.core.outcome_constraint.ObjectiveThreshold'>: <function outcome_constraint_to_dict>, <class 'ax.core.optimization_config.OptimizationConfig'>: <function optimization_config_to_dict>, <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.core.parameter_constraint.OrderConstraint'>: <function order_parameter_constraint_to_dict>, <class 'ax.core.outcome_constraint.OutcomeConstraint'>: <function outcome_constraint_to_dict>, <class 'ax.core.parameter_constraint.ParameterConstraint'>: <function parameter_constraint_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>: <function pytorch_cnn_torchvision_benchmark_problem_to_dict>, <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>: <function metric_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>: <function runner_to_dict>, <class 'ax.core.parameter.RangeParameter'>: <function range_parameter_to_dict>, <class 'ax.core.objective.ScalarizedObjective'>: <function scalarized_objective_to_dict>, <class 'ax.core.search_space.SearchSpace'>: <function search_space_to_dict>, <class 'ax.core.search_space.HierarchicalSearchSpace'>: <function search_space_to_dict>, <class 'ax.core.parameter_constraint.SumConstraint'>: <function sum_parameter_constraint_to_dict>, <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>: <function surrogate_to_dict>, <class 'ax.runners.synthetic.SyntheticRunner'>: <function runner_to_dict>, <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>: <function threshold_early_stopping_strategy_to_dict>, <class 'ax.core.trial.Trial'>: <function trial_to_dict>, <class 'ax.core.observation.ObservationFeatures'>: <function observation_features_to_dict>, <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>: <function winsorization_config_to_dict>}, decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}, val: Optional[int] = None) → Tuple[Dict[Type[ax.core.runner.Runner], int], Dict[Type, Callable[[Any], Dict[str, Any]]], Dict[str, Type]][source]¶ Add a custom runner class to the SQA and JSON registries. For the SQA registry, if no int is specified, use a hash of the class name.
-
ax.storage.runner_registry.
register_runners
(runner_clss: Dict[Type[ax.core.runner.Runner], Optional[int]], runner_registry: Dict[Type[ax.core.runner.Runner], int] = {<class 'ax.runners.synthetic.SyntheticRunner'>: 0}, encoder_registry: Dict[Type, Callable[[Any], Dict[str, Any]]] = {<class 'ax.core.arm.Arm'>: <function arm_to_dict>, <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.metrics.branin.AugmentedBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>: <function metric_to_dict>, <class 'ax.core.batch_trial.BatchTrial'>: <function batch_to_dict>, <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>: <function botorch_model_to_dict>, <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>: <function metric_to_dict>, <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>: <function runner_to_dict>, <class 'ax.metrics.branin.BraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.ChoiceParameter'>: <function choice_parameter_to_dict>, <class 'ax.core.data.Data'>: <function data_to_dict>, <class 'ax.core.experiment.Experiment'>: <function experiment_to_dict>, <class 'ax.metrics.factorial.FactorialMetric'>: <function metric_to_dict>, <class 'ax.core.parameter.FixedParameter'>: <function fixed_parameter_to_dict>, <class 'gpytorch.priors.torch_priors.GammaPrior'>: <function botorch_component_to_dict>, <class 'ax.modelbridge.generation_node.GenerationStep'>: <function generation_step_to_dict>, <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>: <function generation_strategy_to_dict>, <class 'ax.core.generator_run.GeneratorRun'>: <function generator_run_to_dict>, <class 'ax.metrics.hartmann6.Hartmann6Metric'>: <function metric_to_dict>, <class 'gpytorch.constraints.constraints.Interval'>: <function botorch_component_to_dict>, <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>: <function surrogate_to_dict>, <class 'ax.metrics.l2norm.L2NormMetric'>: <function metric_to_dict>, <class 'ax.core.map_data.MapData'>: <function map_data_to_dict>, <class 'ax.core.map_data.MapKeyInfo'>: <function map_key_info_to_dict>, <class 'ax.core.map_metric.MapMetric'>: <function metric_to_dict>, <class 'ax.core.metric.Metric'>: <function metric_to_dict>, <class 'ax.core.objective.MultiObjective'>: <function multi_objective_to_dict>, <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>: <function multi_objective_optimization_config_to_dict>, <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>: <function multi_type_experiment_to_dict>, <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>: <function percentile_early_stopping_strategy_to_dict>, <class 'ax.metrics.sklearn.SklearnMetric'>: <function metric_to_dict>, <class 'ax.metrics.chemistry.ChemistryMetric'>: <function metric_to_dict>, <class 'ax.metrics.branin.NegativeBraninMetric'>: <function metric_to_dict>, <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>: <function metric_to_dict>, <class 'ax.core.objective.Objective'>: <function objective_to_dict>, <class 'ax.core.outcome_constraint.ObjectiveThreshold'>: <function outcome_constraint_to_dict>, <class 'ax.core.optimization_config.OptimizationConfig'>: <function optimization_config_to_dict>, <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>: <function logical_early_stopping_strategy_to_dict>, <class 'ax.core.parameter_constraint.OrderConstraint'>: <function order_parameter_constraint_to_dict>, <class 'ax.core.outcome_constraint.OutcomeConstraint'>: <function outcome_constraint_to_dict>, <class 'ax.core.parameter_constraint.ParameterConstraint'>: <function parameter_constraint_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>: <function pytorch_cnn_torchvision_benchmark_problem_to_dict>, <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>: <function metric_to_dict>, <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>: <function runner_to_dict>, <class 'ax.core.parameter.RangeParameter'>: <function range_parameter_to_dict>, <class 'ax.core.objective.ScalarizedObjective'>: <function scalarized_objective_to_dict>, <class 'ax.core.search_space.SearchSpace'>: <function search_space_to_dict>, <class 'ax.core.search_space.HierarchicalSearchSpace'>: <function search_space_to_dict>, <class 'ax.core.parameter_constraint.SumConstraint'>: <function sum_parameter_constraint_to_dict>, <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>: <function surrogate_to_dict>, <class 'ax.runners.synthetic.SyntheticRunner'>: <function runner_to_dict>, <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>: <function threshold_early_stopping_strategy_to_dict>, <class 'ax.core.trial.Trial'>: <function trial_to_dict>, <class 'ax.core.observation.ObservationFeatures'>: <function observation_features_to_dict>, <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>: <function winsorization_config_to_dict>}, decoder_registry: Dict[str, Type] = {'AbandonedArm': <class 'ax.core.batch_trial.AbandonedArm'>, 'AggregatedBenchmarkResult': <class 'ax.benchmark.benchmark_result.AggregatedBenchmarkResult'>, 'AndEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.AndEarlyStoppingStrategy'>, 'Arm': <class 'ax.core.arm.Arm'>, 'AugmentedBraninMetric': <class 'ax.metrics.branin.AugmentedBraninMetric'>, 'AugmentedHartmann6Metric': <class 'ax.metrics.hartmann6.AugmentedHartmann6Metric'>, 'BatchTrial': <class 'ax.core.batch_trial.BatchTrial'>, 'BenchmarkMethod': <class 'ax.benchmark.benchmark_method.BenchmarkMethod'>, 'BenchmarkProblem': <class 'ax.benchmark.benchmark_problem.BenchmarkProblem'>, 'BenchmarkResult': <class 'ax.benchmark.benchmark_result.BenchmarkResult'>, 'BoTorchModel': <class 'ax.models.torch.botorch_modular.model.BoTorchModel'>, 'BotorchTestProblemMetric': <class 'ax.metrics.botorch_test_problem.BotorchTestProblemMetric'>, 'BotorchTestProblemRunner': <class 'ax.runners.botorch_test_problem.BotorchTestProblemRunner'>, 'BraninMetric': <class 'ax.metrics.branin.BraninMetric'>, 'BraninTimestampMapMetric': <class 'ax.metrics.branin_map.BraninTimestampMapMetric'>, 'ChemistryMetric': <class 'ax.metrics.chemistry.ChemistryMetric'>, 'ChemistryProblemType': <enum 'ChemistryProblemType'>, 'ChoiceParameter': <class 'ax.core.parameter.ChoiceParameter'>, 'ComparisonOp': <enum 'ComparisonOp'>, 'Data': <class 'ax.core.data.Data'>, 'DataType': <enum 'DataType'>, 'DomainType': <enum 'DomainType'>, 'Experiment': <class 'ax.core.experiment.Experiment'>, 'FactorialMetric': <class 'ax.metrics.factorial.FactorialMetric'>, 'FixedParameter': <class 'ax.core.parameter.FixedParameter'>, 'GammaPrior': <class 'gpytorch.priors.torch_priors.GammaPrior'>, 'GenerationStep': <class 'ax.modelbridge.generation_node.GenerationStep'>, 'GenerationStrategy': <class 'ax.modelbridge.generation_strategy.GenerationStrategy'>, 'GeneratorRun': <class 'ax.core.generator_run.GeneratorRun'>, 'GeneratorRunStruct': <class 'ax.core.batch_trial.GeneratorRunStruct'>, 'Hartmann6Metric': <class 'ax.metrics.hartmann6.Hartmann6Metric'>, 'HierarchicalSearchSpace': <class 'ax.core.search_space.HierarchicalSearchSpace'>, 'Interval': <class 'gpytorch.constraints.constraints.Interval'>, 'L2NormMetric': <class 'ax.metrics.l2norm.L2NormMetric'>, 'ListSurrogate': <class 'ax.models.torch.botorch_modular.list_surrogate.ListSurrogate'>, 'MapData': <class 'ax.core.map_data.MapData'>, 'MapKeyInfo': <class 'ax.core.map_data.MapKeyInfo'>, 'MapMetric': <class 'ax.core.map_metric.MapMetric'>, 'Metric': <class 'ax.core.metric.Metric'>, 'Models': <enum 'Models'>, 'MultiObjective': <class 'ax.core.objective.MultiObjective'>, 'MultiObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem'>, 'MultiObjectiveOptimizationConfig': <class 'ax.core.optimization_config.MultiObjectiveOptimizationConfig'>, 'MultiTypeExperiment': <class 'ax.core.multi_type_experiment.MultiTypeExperiment'>, 'NegativeBraninMetric': <class 'ax.metrics.branin.NegativeBraninMetric'>, 'NoisyFunctionMetric': <class 'ax.metrics.noisy_function.NoisyFunctionMetric'>, 'Objective': <class 'ax.core.objective.Objective'>, 'ObjectiveThreshold': <class 'ax.core.outcome_constraint.ObjectiveThreshold'>, 'ObservationFeatures': <class 'ax.core.observation.ObservationFeatures'>, 'OptimizationConfig': <class 'ax.core.optimization_config.OptimizationConfig'>, 'OrEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.logical.OrEarlyStoppingStrategy'>, 'OrderConstraint': <class 'ax.core.parameter_constraint.OrderConstraint'>, 'OutcomeConstraint': <class 'ax.core.outcome_constraint.OutcomeConstraint'>, 'ParameterConstraint': <class 'ax.core.parameter_constraint.ParameterConstraint'>, 'ParameterConstraintType': <enum 'ParameterConstraintType'>, 'ParameterType': <enum 'ParameterType'>, 'PercentileEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.percentile.PercentileEarlyStoppingStrategy'>, 'PyTorchCNNMetric': <class 'ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric'>, 'PyTorchCNNTorchvisionBenchmarkProblem': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem'>, 'PyTorchCNNTorchvisionRunner': <class 'ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner'>, 'RangeParameter': <class 'ax.core.parameter.RangeParameter'>, 'ScalarizedObjective': <class 'ax.core.objective.ScalarizedObjective'>, 'SchedulerOptions': <class 'ax.service.utils.scheduler_options.SchedulerOptions'>, 'ScoredBenchmarkResult': <class 'ax.benchmark.benchmark_result.ScoredBenchmarkResult'>, 'SearchSpace': <class 'ax.core.search_space.SearchSpace'>, 'SingleObjectiveBenchmarkProblem': <class 'ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem'>, 'SklearnDataset': <enum 'SklearnDataset'>, 'SklearnMetric': <class 'ax.metrics.sklearn.SklearnMetric'>, 'SklearnModelType': <enum 'SklearnModelType'>, 'SumConstraint': <class 'ax.core.parameter_constraint.SumConstraint'>, 'Surrogate': <class 'ax.models.torch.botorch_modular.surrogate.Surrogate'>, 'SyntheticRunner': <class 'ax.runners.synthetic.SyntheticRunner'>, 'ThresholdEarlyStoppingStrategy': <class 'ax.early_stopping.strategies.threshold.ThresholdEarlyStoppingStrategy'>, 'Trial': <class 'ax.core.trial.Trial'>, 'TrialStatus': <enum 'TrialStatus'>, 'TrialType': <enum 'TrialType'>, 'WinsorizationConfig': <class 'ax.modelbridge.transforms.winsorize.WinsorizationConfig'>}) → Tuple[Dict[Type[ax.core.runner.Runner], int], Dict[Type, Callable[[Any], Dict[str, Any]]], Dict[str, Type]][source]¶ Add custom runner classes to the SQA and JSON registries. For the SQA registry, if no int is specified, use a hash of the class name.