Source code for ax.service.utils.best_point_mixin

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from abc import ABCMeta, abstractmethod
from typing import Dict, Iterable, Optional, Tuple

from ax.core.experiment import Experiment
from ax.core.optimization_config import (
    MultiObjectiveOptimizationConfig,
    OptimizationConfig,
)
from ax.core.types import TModelPredictArm, TParameterization
from ax.modelbridge.array import ArrayModelBridge
from ax.modelbridge.generation_strategy import GenerationStrategy
from ax.modelbridge.modelbridge_utils import observed_hypervolume, predicted_hypervolume
from ax.modelbridge.registry import get_model_from_generator_run, ModelRegistryBase
from ax.plot.pareto_utils import get_tensor_converter_model
from ax.service.utils import best_point as best_point_utils
from ax.utils.common.typeutils import checked_cast, not_none


[docs]class BestPointMixin(metaclass=ABCMeta):
[docs] @abstractmethod def get_best_trial( self, optimization_config: Optional[OptimizationConfig] = None, trial_indices: Optional[Iterable[int]] = None, use_model_predictions: bool = True, ) -> Optional[Tuple[int, TParameterization, Optional[TModelPredictArm]]]: """Identifies the best parameterization tried in the experiment so far. First attempts to do so with the model used in optimization and its corresponding predictions if available. Falls back to the best raw objective based on the data fetched from the experiment. NOTE: ``TModelPredictArm`` is of the form: ({metric_name: mean}, {metric_name_1: {metric_name_2: cov_1_2}}) Args: optimization_config: Optimization config to use in place of the one stored on the experiment. trial_indices: Indices of trials for which to retrieve data. If None will retrieve data from all available trials. use_model_predictions: Whether to extract the best point using model predictions or directly observed values. If ``True``, the metric means and covariances in this method's output will also be based on model predictions and may differ from the observed values. Returns: Tuple of trial index, parameterization and model predictions for it. """ pass
[docs] def get_best_parameters( self, optimization_config: Optional[OptimizationConfig] = None, trial_indices: Optional[Iterable[int]] = None, use_model_predictions: bool = True, ) -> Optional[Tuple[TParameterization, Optional[TModelPredictArm]]]: """Identifies the best parameterization tried in the experiment so far. First attempts to do so with the model used in optimization and its corresponding predictions if available. Falls back to the best raw objective based on the data fetched from the experiment. NOTE: ``TModelPredictArm`` is of the form: ({metric_name: mean}, {metric_name_1: {metric_name_2: cov_1_2}}) Args: optimization_config: Optimization config to use in place of the one stored on the experiment. trial_indices: Indices of trials for which to retrieve data. If None will retrieve data from all available trials. use_model_predictions: Whether to extract the best point using model predictions or directly observed values. If ``True``, the metric means and covariances in this method's output will also be based on model predictions and may differ from the observed values. Returns: Tuple of parameterization and model predictions for it. """ res = self.get_best_trial( optimization_config=optimization_config, trial_indices=trial_indices, use_model_predictions=use_model_predictions, ) if res is None: return res # pragma: no cover _, parameterization, vals = res return parameterization, vals
[docs] @abstractmethod def get_pareto_optimal_parameters( self, optimization_config: Optional[OptimizationConfig] = None, trial_indices: Optional[Iterable[int]] = None, use_model_predictions: bool = True, ) -> Optional[Dict[int, Tuple[TParameterization, TModelPredictArm]]]: """Identifies the best parameterizations tried in the experiment so far, using model predictions if ``use_model_predictions`` is true and using observed values from the experiment otherwise. By default, uses model predictions to account for observation noise. NOTE: The format of this method's output is as follows: { trial_index --> (parameterization, (means, covariances) }, where means are a dictionary of form { metric_name --> metric_mean } and covariances are a nested dictionary of form { one_metric_name --> { another_metric_name: covariance } }. Args: optimization_config: Optimization config to use in place of the one stored on the experiment. trial_indices: Indices of trials for which to retrieve data. If None will retrieve data from all available trials. use_model_predictions: Whether to extract the Pareto frontier using model predictions or directly observed values. If ``True``, the metric means and covariances in this method's output will also be based on model predictions and may differ from the observed values. Returns: ``None`` if it was not possible to extract the Pareto frontier, otherwise a mapping from trial index to the tuple of: - the parameterization of the arm in that trial, - two-item tuple of metric means dictionary and covariance matrix (model-predicted if ``use_model_predictions=True`` and observed otherwise). """ pass
[docs] @abstractmethod def get_hypervolume( self, optimization_config: Optional[MultiObjectiveOptimizationConfig] = None, trial_indices: Optional[Iterable[int]] = None, use_model_predictions: bool = True, ) -> float: """Calculate hypervolume of a pareto frontier based on either the posterior means of given observation features or observed data. Args: optimization_config: Optimization config to use in place of the one stored on the experiment. trial_indices: Indices of trials for which to retrieve data. If None will retrieve data from all available trials. use_model_predictions: Whether to extract the Pareto frontier using model predictions or directly observed values. If ``True``, the metric means and covariances in this method's output will also be based on model predictions and may differ from the observed values. """ pass
@staticmethod def _get_best_trial( experiment: Experiment, generation_strategy: GenerationStrategy, optimization_config: Optional[OptimizationConfig] = None, trial_indices: Optional[Iterable[int]] = None, use_model_predictions: bool = True, ) -> Optional[Tuple[int, TParameterization, Optional[TModelPredictArm]]]: if not_none(experiment.optimization_config).is_moo_problem: raise NotImplementedError( # pragma: no cover "Please use `get_pareto_optimal_parameters` for multi-objective " "problems." ) # TODO[drfreund]: Find a way to include data for last trial in the # calculation of best parameters. if use_model_predictions: current_model = generation_strategy._curr.model # Cover for the case where source of `self._curr.model` was not a `Models` # enum but a factory function, in which case we cannot do # `get_model_from_generator_run` (since we don't have model type and inputs # recorded on the generator run. models_enum = ( current_model.__class__ if isinstance(current_model, ModelRegistryBase) else None ) if models_enum is not None: res = best_point_utils.get_best_parameters_from_model_predictions_with_trial_index( # noqa experiment=experiment, models_enum=models_enum, optimization_config=optimization_config, trial_indices=trial_indices, ) if res is not None: return res # pragma: no cover return best_point_utils.get_best_by_raw_objective_with_trial_index( experiment=experiment, optimization_config=optimization_config, trial_indices=trial_indices, ) @staticmethod def _get_pareto_optimal_parameters( experiment: Experiment, generation_strategy: GenerationStrategy, optimization_config: Optional[OptimizationConfig] = None, trial_indices: Optional[Iterable[int]] = None, use_model_predictions: bool = True, ) -> Optional[Dict[int, Tuple[TParameterization, TModelPredictArm]]]: if not not_none(experiment.optimization_config).is_moo_problem: raise NotImplementedError( # pragma: no cover "Please use `get_best_parameters` for single-objective problems." ) return best_point_utils.get_pareto_optimal_parameters( experiment=experiment, generation_strategy=generation_strategy, optimization_config=optimization_config, trial_indices=trial_indices, use_model_predictions=use_model_predictions, ) @staticmethod def _get_hypervolume( experiment: Experiment, generation_strategy: GenerationStrategy, optimization_config: Optional[MultiObjectiveOptimizationConfig] = None, trial_indices: Optional[Iterable[int]] = None, use_model_predictions: bool = True, ) -> float: moo_optimization_config = checked_cast( MultiObjectiveOptimizationConfig, optimization_config or experiment.optimization_config, ) if use_model_predictions: current_model = generation_strategy._curr.model # Cover for the case where source of `self._curr.model` was not a `Models` # enum but a factory function, in which case we cannot do # `get_model_from_generator_run` (since we don't have model type and inputs # recorded on the generator run. models_enum = ( current_model.__class__ if isinstance(current_model, ModelRegistryBase) else None ) if models_enum is None: raise ValueError( f"Model {current_model} is not in the ModelRegistry, cannot " "calculate predicted hypervolume." ) model = get_model_from_generator_run( generator_run=not_none(generation_strategy.last_generator_run), experiment=experiment, data=experiment.fetch_data(trial_indices=trial_indices), models_enum=models_enum, ) if not isinstance(model, ArrayModelBridge): raise ValueError( f"Model {current_model} is not of type ArrayModelBridge, cannot " "calculate predicted hypervolume." ) return predicted_hypervolume( modelbridge=model, optimization_config=optimization_config ) minimal_model = get_tensor_converter_model( experiment=experiment, data=experiment.lookup_data(trial_indices=trial_indices), ) return observed_hypervolume( modelbridge=minimal_model, optimization_config=moo_optimization_config )