ax.benchmark¶
Benchmark¶
Benchmark Method¶
- class ax.benchmark.benchmark_method.BenchmarkMethod(name: str, generation_strategy: GenerationStrategy, scheduler_options: SchedulerOptions)[source]¶
Bases:
Base
Benchmark method, represented in terms of Ax generation strategy (which tells us which models to use when) and scheduler options (which tell us extra execution information like maximum parallelism, early stopping configuration, etc.). Note: if BenchmarkMethod.scheduler_optionss.total_trials is lower than BenchmarkProblem.num_trials only the number of trials specified in the former will be run.
- generation_strategy: GenerationStrategy¶
- scheduler_options: SchedulerOptions¶
- ax.benchmark.benchmark_method.get_sequential_optimization_scheduler_options() SchedulerOptions [source]¶
The typical SchedulerOptions used in benchmarking.
Benchmark Problem¶
- class ax.benchmark.benchmark_problem.BenchmarkProblem(name: str, search_space: ~ax.core.search_space.SearchSpace, optimization_config: ~ax.core.optimization_config.OptimizationConfig, runner: ~ax.core.runner.Runner, num_trials: int, infer_noise: bool, tracking_metrics: ~typing.List[~ax.core.metric.Metric] = <factory>)[source]¶
Bases:
Base
Benchmark problem, represented in terms of Ax search space, optimization config, and runner.
- classmethod from_botorch(test_problem_class: Type[BaseTestProblem], test_problem_kwargs: Dict[str, Any], num_trials: int, infer_noise: bool = True) BenchmarkProblem [source]¶
Create a BenchmarkProblem from a BoTorch BaseTestProblem using specialized Metrics and Runners. The test problem’s result will be computed on the Runner and retrieved by the Metric.
- optimization_config: OptimizationConfig¶
- search_space: SearchSpace¶
- class ax.benchmark.benchmark_problem.MultiObjectiveBenchmarkProblem(maximum_hypervolume: float, reference_point: List[float], **kwargs: Any)[source]¶
Bases:
BenchmarkProblem
A BenchmarkProblem support multiple objectives. Rather than knowing each objective’s optimal value we track a known maximum hypervolume computed from a given reference point.
- classmethod from_botorch_multi_objective(test_problem_class: Type[MultiObjectiveTestProblem], test_problem_kwargs: Dict[str, Any], num_trials: int, infer_noise: bool = True) MultiObjectiveBenchmarkProblem [source]¶
Create a BenchmarkProblem from a BoTorch BaseTestProblem using specialized Metrics and Runners. The test problem’s result will be computed on the Runner once per trial and each Metric will retrieve its own result by index.
- class ax.benchmark.benchmark_problem.SingleObjectiveBenchmarkProblem(optimal_value: float, **kwargs: Any)[source]¶
Bases:
BenchmarkProblem
The most basic BenchmarkProblem, with a single objective and a known optimal value.
- classmethod from_botorch_synthetic(test_problem_class: Type[SyntheticTestFunction], test_problem_kwargs: Dict[str, Any], num_trials: int, infer_noise: bool = True) SingleObjectiveBenchmarkProblem [source]¶
Create a BenchmarkProblem from a BoTorch BaseTestProblem using specialized Metrics and Runners. The test problem’s result will be computed on the Runner and retrieved by the Metric.
Benchmark Result¶
- class ax.benchmark.benchmark_result.AggregatedBenchmarkResult(name: str, results: List[BenchmarkResult], optimization_trace: pandas.DataFrame, score_trace: pandas.DataFrame, fit_time: List[float], gen_time: List[float])[source]¶
Bases:
Base
The result of a benchmark test, or series of replications. Scalar data present in the BenchmarkResult is here represented as (mean, sem) pairs. More information will be added to the AggregatedBenchmarkResult as the suite develops.
- classmethod from_benchmark_results(results: List[BenchmarkResult]) AggregatedBenchmarkResult [source]¶
Aggregrates a list of BenchmarkResults. For various reasons (timeout, errors, etc.) each BenchmarkResult may have a different number of trials; aggregated traces and statistics are computed with and truncated to the minimum trial count to ensure each replication is included.
- optimization_trace: pandas.DataFrame¶
- results: List[BenchmarkResult]¶
- score_trace: pandas.DataFrame¶
- class ax.benchmark.benchmark_result.BenchmarkResult(name: str, seed: int, experiment: Experiment, optimization_trace: ndarray, score_trace: ndarray, fit_time: float, gen_time: float)[source]¶
Bases:
Base
The result of a single optimization loop from one (BenchmarkProblem, BenchmarkMethod) pair. More information will be added to the BenchmarkResult as the suite develops.
- experiment: Experiment¶
- optimization_trace: ndarray¶
- optimization_trace_by_progression(final_progression_only: bool = False) Tuple[ndarray, ndarray] [source]¶
- progression_trace() ndarray [source]¶
Computes progressions used as a function of trials and also the total progression across all trials.
- score_trace: ndarray¶
Benchmark¶
Module for benchmarking Ax algorithms.
Key terms used:
Replication: 1 run of an optimization loop; (BenchmarkProblem, BenchmarkMethod) pair.
Test: multiple replications, ran for statistical significance.
Full run: multiple tests on many (BenchmarkProblem, BenchmarkMethod) pairs.
Method: (one of) the algorithm(s) being benchmarked.
Problem: a synthetic function, a surrogate surface, or an ML model, on which to assess the performance of algorithms.
- ax.benchmark.benchmark.benchmark_full_run(problems: Iterable[BenchmarkProblem], methods: Iterable[BenchmarkMethod], seeds: Iterable[int], **kwargs: Any) List[AggregatedBenchmarkResult] [source]¶
- ax.benchmark.benchmark.benchmark_replication(problem: BenchmarkProblem, method: BenchmarkMethod, seed: int) BenchmarkResult [source]¶
Runs one benchmarking replication (equivalent to one optimization loop).
- Parameters:
problem – The BenchmarkProblem to test against (can be synthetic or real)
method – The BenchmarkMethod to test
seed – The seed to use for this replication, set using manual_seed from botorch.utils.sampling.
- ax.benchmark.benchmark.benchmark_test(problem: BenchmarkProblem, method: BenchmarkMethod, seeds: Iterable[int], **kwargs: Any) AggregatedBenchmarkResult [source]¶
Scored Benchmark¶
Benchmark Methods GPEI and MOO¶
- ax.benchmark.methods.gpei_and_moo.get_gpei_default() BenchmarkMethod [source]¶
- ax.benchmark.methods.gpei_and_moo.get_moo_default() BenchmarkMethod [source]¶
Benchmark Methods Modular BoTorch¶
- ax.benchmark.methods.modular_botorch.get_sobol_botorch_modular_acquisition(acquisition_cls: Type[AcquisitionFunction], acquisition_options: Optional[Dict[str, Any]] = None) BenchmarkMethod [source]¶
- ax.benchmark.methods.modular_botorch.get_sobol_botorch_modular_default() BenchmarkMethod [source]¶
- ax.benchmark.methods.modular_botorch.get_sobol_botorch_modular_fixed_noise_gp_qnehvi() BenchmarkMethod [source]¶
- ax.benchmark.methods.modular_botorch.get_sobol_botorch_modular_fixed_noise_gp_qnei() BenchmarkMethod [source]¶
- ax.benchmark.methods.modular_botorch.get_sobol_botorch_modular_saas_fully_bayesian_single_task_gp_qnehvi() BenchmarkMethod [source]¶
- ax.benchmark.methods.modular_botorch.get_sobol_botorch_modular_saas_fully_bayesian_single_task_gp_qnei() BenchmarkMethod [source]¶
Benchmark Methods SAASBO¶
- ax.benchmark.methods.saasbo.get_saasbo_default() BenchmarkMethod [source]¶
- ax.benchmark.methods.saasbo.get_saasbo_moo_default() BenchmarkMethod [source]¶
Benchmark Methods Choose Generation Strategy¶
- ax.benchmark.methods.choose_generation_strategy.get_choose_generation_strategy_method(problem: BenchmarkProblem) BenchmarkMethod [source]¶
Benchmark Problems Registry¶
- class ax.benchmark.problems.registry.BenchmarkProblemRegistryEntry(factory_fn: Callable[..., ax.benchmark.benchmark_problem.BenchmarkProblem], factory_kwargs: Dict[str, Any])[source]¶
Bases:
object
- factory_fn: Callable[[...], BenchmarkProblem]¶
- ax.benchmark.problems.registry.get_problem(problem_name: str) BenchmarkProblem [source]¶
Benchmark Problems High Dimensional Embedding¶
- ax.benchmark.problems.hd_embedding.embed_higher_dimension(problem: BenchmarkProblem, total_dimensionality: int) BenchmarkProblem [source]¶
Benchmark Problems Surrogate¶
- class ax.benchmark.problems.surrogate.SurrogateBenchmarkProblem(optimal_value: float, **kwargs: Any)[source]¶
Bases:
SingleObjectiveBenchmarkProblem
- classmethod from_surrogate(name: str, search_space: SearchSpace, surrogate: Surrogate, datasets: List[SupervisedDataset], minimize: bool, optimal_value: float, num_trials: int, infer_noise: bool = True) SurrogateBenchmarkProblem [source]¶
- optimization_config: OptimizationConfig¶
- search_space: SearchSpace¶
- tracking_metrics: List[Metric]¶
- class ax.benchmark.problems.surrogate.SurrogateMetric(infer_noise: bool = True)[source]¶
Bases:
Metric
- class ax.benchmark.problems.surrogate.SurrogateRunner(name: str, surrogate: Surrogate, datasets: List[SupervisedDataset], search_space: SearchSpace)[source]¶
Bases:
Runner
- classmethod deserialize_init_args(args: Dict[str, Any]) Dict[str, Any] [source]¶
Given a dictionary, deserialize the properties needed to initialize the object. Used for storage.
- poll_trial_status(trials: Iterable[BaseTrial]) Dict[TrialStatus, Set[int]] [source]¶
Checks the status of any non-terminal trials and returns their indices as a mapping from TrialStatus to a list of indices. Required for runners used with Ax
Scheduler
.NOTE: Does not need to handle waiting between polling calls while trials are running; this function should just perform a single poll.
- Parameters:
trials – Trials to poll.
- Returns:
A dictionary mapping TrialStatus to a list of trial indices that have the respective status at the time of the polling. This does not need to include trials that at the time of polling already have a terminal (ABANDONED, FAILED, COMPLETED) status (but it may).
- run(trial: BaseTrial) Dict[str, Any] [source]¶
Deploys a trial based on custom runner subclass implementation.
- Parameters:
trial – The trial to deploy.
- Returns:
Dict of run metadata from the deployment process.
- classmethod serialize_init_args(obj: Any) Dict[str, Any] [source]¶
Serialize the properties needed to initialize the runner. Used for storage.
WARNING: Because of issues with consistently saving and loading BoTorch and GPyTorch modules the SurrogateRunner cannot be serialized at this time. At load time the runner will be replaced with a SyntheticRunner.
Benchmark Problems Jenatton¶
- ax.benchmark.problems.synthetic.hss.jenatton.get_jenatton_benchmark_problem(num_trials: int = 50, infer_noise: bool = True) SingleObjectiveBenchmarkProblem [source]¶
Benchmark Problems PyTorchCNN¶
- class ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNBenchmarkProblem(optimal_value: float, **kwargs: Any)[source]¶
Bases:
SingleObjectiveBenchmarkProblem
- classmethod from_datasets(name: str, num_trials: int, train_set: Dataset, test_set: Dataset, infer_noise: bool = True) PyTorchCNNBenchmarkProblem [source]¶
- optimization_config: OptimizationConfig¶
- search_space: SearchSpace¶
- tracking_metrics: List[Metric]¶
- class ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNMetric(infer_noise: bool = True)[source]¶
Bases:
Metric
- class ax.benchmark.problems.hpo.pytorch_cnn.PyTorchCNNRunner(name: str, train_set: Dataset, test_set: Dataset)[source]¶
Bases:
Runner
- class CNN[source]¶
Bases:
Module
- forward(x)[source]¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- poll_trial_status(trials: Iterable[BaseTrial]) Dict[TrialStatus, Set[int]] [source]¶
Checks the status of any non-terminal trials and returns their indices as a mapping from TrialStatus to a list of indices. Required for runners used with Ax
Scheduler
.NOTE: Does not need to handle waiting between polling calls while trials are running; this function should just perform a single poll.
- Parameters:
trials – Trials to poll.
- Returns:
A dictionary mapping TrialStatus to a list of trial indices that have the respective status at the time of the polling. This does not need to include trials that at the time of polling already have a terminal (ABANDONED, FAILED, COMPLETED) status (but it may).
Benchmark Problems PyTorchCNN TorchVision¶
- class ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionBenchmarkProblem(optimal_value: float, **kwargs: Any)[source]¶
Bases:
PyTorchCNNBenchmarkProblem
- classmethod from_dataset_name(name: str, num_trials: int, infer_noise: bool = True) PyTorchCNNTorchvisionBenchmarkProblem [source]¶
- optimization_config: OptimizationConfig¶
- search_space: SearchSpace¶
- tracking_metrics: List[Metric]¶
- class ax.benchmark.problems.hpo.torchvision.PyTorchCNNTorchvisionRunner(name: str, train_set: Dataset, test_set: Dataset)[source]¶
Bases:
PyTorchCNNRunner
A subclass to aid in serialization. This allows us to save only the name of the dataset and reload it from TorchVision at deserialization time.