Source code for ax.benchmark.methods.modular_botorch

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Any, Dict, Optional, Type

from ax.benchmark.benchmark_method import (
    BenchmarkMethod,
    get_sequential_optimization_scheduler_options,
)
from ax.modelbridge.generation_strategy import GenerationStep, GenerationStrategy
from ax.modelbridge.registry import Models
from ax.models.torch.botorch_modular.list_surrogate import ListSurrogate
from ax.models.torch.botorch_modular.surrogate import Surrogate
from ax.utils.common.constants import Keys
from botorch.acquisition.acquisition import AcquisitionFunction
from botorch.acquisition.monte_carlo import qNoisyExpectedImprovement
from botorch.acquisition.multi_objective.monte_carlo import (
    qNoisyExpectedHypervolumeImprovement,
)
from botorch.models.fully_bayesian import SaasFullyBayesianSingleTaskGP
from botorch.models.gp_regression import FixedNoiseGP


[docs]def get_sobol_botorch_modular_fixed_noise_gp_qnei() -> BenchmarkMethod: model_gen_kwargs = { "model_gen_options": { Keys.OPTIMIZER_KWARGS: { "num_restarts": 50, "raw_samples": 1024, }, Keys.ACQF_KWARGS: { "prune_baseline": True, "qmc": True, "mc_samples": 512, }, } } generation_strategy = GenerationStrategy( name="SOBOL+BOTORCH_MODULAR::FixedNoiseGP_qNoisyExpectedImprovement", steps=[ GenerationStep(model=Models.SOBOL, num_trials=5, min_trials_observed=5), GenerationStep( model=Models.BOTORCH_MODULAR, num_trials=-1, max_parallelism=1, model_kwargs={ "surrogate": Surrogate(FixedNoiseGP), "botorch_acqf_class": qNoisyExpectedImprovement, }, model_gen_kwargs=model_gen_kwargs, ), ], ) return BenchmarkMethod( name=generation_strategy.name, generation_strategy=generation_strategy, scheduler_options=get_sequential_optimization_scheduler_options(), )
[docs]def get_sobol_botorch_modular_fixed_noise_gp_qnehvi() -> BenchmarkMethod: model_gen_kwargs = { "model_gen_options": { Keys.OPTIMIZER_KWARGS: { "num_restarts": 50, "raw_samples": 1024, }, Keys.ACQF_KWARGS: { "prune_baseline": True, "qmc": True, "mc_samples": 512, }, } } generation_strategy = GenerationStrategy( name="SOBOL+BOTORCH_MODULAR::FixedNoiseGP_qNoisyExpectedHypervolumeImprovement", steps=[ GenerationStep( model=Models.SOBOL, num_trials=5, min_trials_observed=5, ), GenerationStep( model=Models.BOTORCH_MODULAR, num_trials=-1, max_parallelism=1, model_kwargs={ "surrogate": Surrogate(FixedNoiseGP), "botorch_acqf_class": qNoisyExpectedHypervolumeImprovement, }, model_gen_kwargs=model_gen_kwargs, ), ], ) return BenchmarkMethod( name=generation_strategy.name, generation_strategy=generation_strategy, scheduler_options=get_sequential_optimization_scheduler_options(), )
[docs]def get_sobol_botorch_modular_saas_fully_bayesian_single_task_gp_qnei() -> BenchmarkMethod: # noqa generation_strategy = GenerationStrategy( name="SOBOL+BOTORCH_MODULAR::SaasFullyBayesianSingleTaskGP_qNoisyExpectedImprovement", # noqa steps=[ GenerationStep(model=Models.SOBOL, num_trials=5, min_trials_observed=5), GenerationStep( model=Models.BOTORCH_MODULAR, num_trials=-1, max_parallelism=1, model_kwargs={ "surrogate": ListSurrogate( botorch_submodel_class=SaasFullyBayesianSingleTaskGP ), "botorch_acqf_class": qNoisyExpectedImprovement, }, ), ], ) return BenchmarkMethod( name=generation_strategy.name, generation_strategy=generation_strategy, scheduler_options=get_sequential_optimization_scheduler_options(), )
[docs]def get_sobol_botorch_modular_saas_fully_bayesian_single_task_gp_qnehvi() -> BenchmarkMethod: # noqa generation_strategy = GenerationStrategy( name="SOBOL+BOTORCH_MODULAR::SaasFullyBayesianSingleTaskGP_qNoisyExpectedHypervolumeImprovement", # noqa steps=[ GenerationStep( model=Models.SOBOL, num_trials=5, min_trials_observed=5, ), GenerationStep( model=Models.BOTORCH_MODULAR, num_trials=-1, max_parallelism=1, model_kwargs={ "surrogate": ListSurrogate( botorch_submodel_class=SaasFullyBayesianSingleTaskGP ), "botorch_acqf_class": qNoisyExpectedHypervolumeImprovement, }, ), ], ) return BenchmarkMethod( name=generation_strategy.name, generation_strategy=generation_strategy, scheduler_options=get_sequential_optimization_scheduler_options(), )
[docs]def get_sobol_botorch_modular_default() -> BenchmarkMethod: generation_strategy = GenerationStrategy( name="SOBOL+BOTORCH_MODULAR::default", steps=[ GenerationStep(model=Models.SOBOL, num_trials=5, min_trials_observed=5), GenerationStep( model=Models.BOTORCH_MODULAR, num_trials=-1, max_parallelism=1, ), ], ) return BenchmarkMethod( name=generation_strategy.name, generation_strategy=generation_strategy, scheduler_options=get_sequential_optimization_scheduler_options(), )
[docs]def get_sobol_botorch_modular_acquisition( acquisition_cls: Type[AcquisitionFunction], acquisition_options: Optional[Dict[str, Any]] = None, ) -> BenchmarkMethod: generation_strategy = GenerationStrategy( name=f"SOBOL+BOTORCH_MODULAR::{acquisition_cls.__name__}", steps=[ GenerationStep( model=Models.SOBOL, num_trials=5, min_trials_observed=5, ), GenerationStep( model=Models.BOTORCH_MODULAR, num_trials=-1, max_parallelism=1, model_kwargs={ "botorch_acqf_class": acquisition_cls, "acquisition_options": acquisition_options, }, ), ], ) return BenchmarkMethod( name=generation_strategy.name, generation_strategy=generation_strategy, scheduler_options=get_sequential_optimization_scheduler_options(), )