Source code for ax.models.random.sobol

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

from typing import Callable, Optional

import numpy as np
import torch
from ax.models.model_utils import tunable_feature_indices
from ax.models.random.base import RandomModel
from ax.models.types import TConfig
from ax.utils.common.typeutils import not_none
from torch.quasirandom import SobolEngine


[docs]class SobolGenerator(RandomModel): """This class specifies the generation algorithm for a Sobol generator. As Sobol does not make use of a model, it does not implement the fit or predict methods. Attributes: scramble: If True, permutes the parameter values among the elements of the Sobol sequence. Default is True. See base `RandomModel` for a description of remaining attributes. """ def __init__( self, deduplicate: bool = True, seed: Optional[int] = None, init_position: int = 0, scramble: bool = True, generated_points: Optional[np.ndarray] = None, fallback_to_sample_polytope: bool = False, ) -> None: super().__init__( deduplicate=deduplicate, seed=seed, init_position=init_position, generated_points=generated_points, fallback_to_sample_polytope=fallback_to_sample_polytope, ) self.scramble = scramble # Initialize engine on gen. self._engine: Optional[SobolEngine] = None
[docs] def init_engine(self, n_tunable_features: int) -> SobolEngine: """Initialize singleton SobolEngine, only on gen. Args: n_tunable_features: The number of features which can be searched over. Returns: SobolEngine, which can generate Sobol points. """ if not self._engine: self._engine = SobolEngine( dimension=n_tunable_features, scramble=self.scramble, seed=self.seed ).fast_forward(self.init_position) return self._engine
@property def engine(self) -> Optional[SobolEngine]: """Return a singleton SobolEngine.""" return self._engine
[docs] def gen( self, n: int, bounds: list[tuple[float, float]], linear_constraints: Optional[tuple[np.ndarray, np.ndarray]] = None, fixed_features: Optional[dict[int, float]] = None, model_gen_options: Optional[TConfig] = None, rounding_func: Optional[Callable[[np.ndarray], np.ndarray]] = None, ) -> tuple[np.ndarray, np.ndarray]: """Generate new candidates. Args: n: Number of candidates to generate. bounds: A list of (lower, upper) tuples for each column of X. linear_constraints: A tuple of (A, b). For k linear constraints on d-dimensional x, A is (k x d) and b is (k x 1) such that A x <= b. fixed_features: A map {feature_index: value} for features that should be fixed to a particular value during generation. rounding_func: A function that rounds an optimization result appropriately (e.g., according to `round-trip` transformations). Returns: 2-element tuple containing - (n x d) array of generated points. - Uniform weights, an n-array of ones for each point. """ tf_indices = tunable_feature_indices( bounds=bounds, fixed_features=fixed_features ) if len(tf_indices) > 0: self.init_engine(len(tf_indices)) points, weights = super().gen( n=n, bounds=bounds, linear_constraints=linear_constraints, fixed_features=fixed_features, model_gen_options=model_gen_options, rounding_func=rounding_func, ) if self.engine: self.init_position = not_none(self.engine).num_generated return (points, weights)
def _gen_samples(self, n: int, tunable_d: int) -> np.ndarray: """Generate n samples. Args: n: Number of samples to generate. tunable_d: The dimension of the generated samples. This must match the tunable parameters used while initializing the Sobol engine. Returns: A numpy array of samples of shape `(n x tunable_d)`. """ if tunable_d == 0: return np.zeros((n, 0)) if self.engine is None: raise ValueError( "Sobol Engine must be initialized before candidate generation." ) return not_none(self.engine).draw(n, dtype=torch.double).numpy()