Source code for ax.modelbridge.transforms.time_as_feature

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

from logging import Logger
from time import time
from typing import Optional, TYPE_CHECKING

import pandas as pd

from ax.core.observation import Observation, ObservationFeatures
from ax.core.parameter import ParameterType, RangeParameter
from ax.core.search_space import RobustSearchSpace, SearchSpace
from ax.exceptions.core import UnsupportedError
from ax.modelbridge.transforms.base import Transform
from ax.models.types import TConfig
from ax.utils.common.logger import get_logger
from ax.utils.common.timeutils import unixtime_to_pandas_ts
from ax.utils.common.typeutils import checked_cast, not_none

if TYPE_CHECKING:
    # import as module to make sphinx-autodoc-typehints happy
    from ax import modelbridge as modelbridge_module  # noqa F401


logger: Logger = get_logger(__name__)


[docs]class TimeAsFeature(Transform): """Convert start time and duration into features that can be used for modeling. If no end_time is available, the current time is used. Duration is normalized to the unit cube. Transform is done in-place. TODO: revise this when better support for non-tunable features is added. """ def __init__( self, search_space: Optional[SearchSpace] = None, observations: Optional[list[Observation]] = None, modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None, config: Optional[TConfig] = None, ) -> None: assert observations is not None, "TimeAsFeature requires observations" if isinstance(search_space, RobustSearchSpace): raise UnsupportedError( "TimeAsFeature transform is not supported for RobustSearchSpace." ) self.min_start_time: float = float("inf") self.max_start_time: float = float("-inf") self.min_duration: float = float("inf") self.max_duration: float = float("-inf") self.current_time: float = time() for obs in observations: obsf = obs.features if obsf.start_time is None: raise ValueError( "Unable to use TimeAsFeature since not all observations have " "start time specified." ) start_time = not_none(obsf.start_time).timestamp() self.min_start_time = min(self.min_start_time, start_time) self.max_start_time = max(self.max_start_time, start_time) duration = self._get_duration(start_time=start_time, end_time=obsf.end_time) self.min_duration = min(self.min_duration, duration) self.max_duration = max(self.max_duration, duration) self.duration_range: float = self.max_duration - self.min_duration if self.duration_range == 0: # no need to case-distinguish during normalization self.duration_range = 1.0 def _get_duration( self, start_time: float, end_time: Optional[pd.Timestamp] ) -> float: return ( self.current_time if end_time is None else end_time.timestamp() ) - start_time
[docs] def transform_observation_features( self, observation_features: list[ObservationFeatures] ) -> list[ObservationFeatures]: for obsf in observation_features: if obsf.start_time is not None: start_time = obsf.start_time.timestamp() obsf.parameters["start_time"] = start_time duration = self._get_duration( start_time=start_time, end_time=obsf.end_time ) # normalize duration to the unit cube obsf.parameters["duration"] = ( duration - self.min_duration ) / self.duration_range else: # start time can be None for pending arms that generated # with a model that did not use the TimeAsFeature transform. # In that case, assume the arm is going to be evaluated at the # current time, and that the duration is the midpoint of the # range. obsf.parameters["start_time"] = self.current_time obsf.parameters["duration"] = 0.5 return observation_features
def _transform_search_space(self, search_space: SearchSpace) -> SearchSpace: for p_name in ("start_time", "duration"): if p_name in search_space.parameters: raise ValueError( f"Parameter name {p_name} is reserved when using " "TimeAsFeature transform, but is part of the provided " "search space. Please choose a different name for " "this parameter." ) param = RangeParameter( name="start_time", parameter_type=ParameterType.FLOAT, lower=self.min_start_time, upper=self.max_start_time, ) search_space.add_parameter(param) param = RangeParameter( name="duration", parameter_type=ParameterType.FLOAT, # duration is normalized to [0,1] lower=0.0, upper=1.0, ) search_space.add_parameter(param) return search_space
[docs] def untransform_observation_features( self, observation_features: list[ObservationFeatures] ) -> list[ObservationFeatures]: for obsf in observation_features: start_time = checked_cast(float, obsf.parameters.pop("start_time")) obsf.start_time = unixtime_to_pandas_ts(start_time) obsf.end_time = unixtime_to_pandas_ts( checked_cast(float, obsf.parameters.pop("duration")) * self.duration_range + self.min_duration + start_time ) return observation_features