Source code for ax.modelbridge.transforms.relativize

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

from __future__ import annotations

from abc import ABC, abstractmethod

from math import sqrt
from typing import Callable, Optional, Tuple, TYPE_CHECKING, Union

import numpy as np
from ax.core.observation import Observation, ObservationData, ObservationFeatures
from ax.core.optimization_config import (
    MultiObjectiveOptimizationConfig,
    OptimizationConfig,
)
from ax.core.outcome_constraint import OutcomeConstraint
from ax.core.search_space import SearchSpace
from ax.modelbridge import ModelBridge
from ax.modelbridge.transforms.base import Transform
from ax.models.types import TConfig
from ax.utils.common.typeutils import not_none
from ax.utils.stats.statstools import relativize, unrelativize

if TYPE_CHECKING:
    # import as module to make sphinx-autodoc-typehints happy
    from ax import modelbridge as modelbridge_module  # noqa F401


[docs]class BaseRelativize(Transform, ABC): """ Change the relative flag of the given relative optimization configuration to False. This is needed in order for the new opt config to pass ModelBridge that requires non-relativized opt config. Also transforms absolute data and opt configs to relative. Requires a modelbridge with a status quo set to work. Abstract property control_as_constant is set to True/False in its subclasses Relativize and RelativizeWithConstantControl respectively to account for appropriate transform/untransform differently. """ def __init__( self, search_space: Optional[SearchSpace] = None, observations: Optional[list[Observation]] = None, modelbridge: Optional[modelbridge_module.base.ModelBridge] = None, config: Optional[TConfig] = None, ) -> None: cls_name = self.__class__.__name__ assert observations is not None, f"{cls_name} requires observations" super().__init__( search_space=search_space, observations=observations, modelbridge=modelbridge, config=config, ) # self.modelbridge should NOT be modified self.modelbridge: ModelBridge = not_none( modelbridge, f"{cls_name} transform requires a modelbridge" ) self.status_quo_data_by_trial: dict[int, ObservationData] = not_none( self.modelbridge.status_quo_data_by_trial, f"{cls_name} requires status quo data.", ) # use latest index of latest observed trial by default # to handle pending trials, which may not have a trial_index # if TrialAsTask was not used to generate the trial. self.default_trial_idx: int = max(self.status_quo_data_by_trial.keys()) @property @abstractmethod def control_as_constant(self) -> bool: """Whether or not the control is treated as a constant in the model."""
[docs] def transform_optimization_config( self, optimization_config: OptimizationConfig, modelbridge: Optional[modelbridge_module.base.ModelBridge] = None, fixed_features: Optional[ObservationFeatures] = None, ) -> OptimizationConfig: r""" Change the relative flag of the given relative optimization configuration to False. This is needed in order for the new opt config to pass ModelBridge that requires non-relativized opt config. Args: opt_config: Optimization configuration relative to status quo. Returns: Optimization configuration relative to status quo with relative flag equal to false. """ # Getting constraints constraints = [ constraint.clone() for constraint in optimization_config.outcome_constraints ] if not all( constraint.relative for constraint in optimization_config.outcome_constraints ): raise ValueError( "All constraints must be relative to use the Relativize transform." ) for constraint in constraints: constraint.relative = False if isinstance(optimization_config, MultiObjectiveOptimizationConfig): # Getting objective thresholds obj_thresholds = [ obj_threshold.clone() for obj_threshold in optimization_config.objective_thresholds ] for obj_threshold in obj_thresholds: if not obj_threshold.relative: raise ValueError( "All objective thresholds must be relative to use " "the Relativize transform." ) obj_threshold.relative = False new_optimization_config = MultiObjectiveOptimizationConfig( objective=optimization_config.objective, outcome_constraints=constraints, objective_thresholds=obj_thresholds, ) else: new_optimization_config = OptimizationConfig( objective=optimization_config.objective, outcome_constraints=constraints, ) return new_optimization_config
[docs] def untransform_outcome_constraints( self, outcome_constraints: list[OutcomeConstraint], fixed_features: Optional[ObservationFeatures] = None, ) -> list[OutcomeConstraint]: for c in outcome_constraints: c.relative = True return outcome_constraints
[docs] def transform_observations( self, observations: list[Observation], ) -> list[Observation]: return self._rel_op_on_observations( observations=observations, rel_op=relativize )
[docs] def untransform_observations( self, observations: list[Observation] ) -> list[Observation]: """Unrelativize the data""" return self._rel_op_on_observations( observations=observations, rel_op=unrelativize )
def _get_relative_data_from_obs( self, obs: Observation, rel_op: Callable[..., tuple[np.ndarray, np.ndarray]], ) -> ObservationData: idx = ( int(obs.features.trial_index) if obs.features.trial_index is not None else self.default_trial_idx ) if idx not in self.status_quo_data_by_trial: raise ValueError( f"{self.__class__.__name__} requires status quo data for trial " f"index {idx}." ) return self._get_relative_data( data=obs.data, status_quo_data=self.status_quo_data_by_trial[idx], rel_op=rel_op, ) def _rel_op_on_observations( self, observations: list[Observation], rel_op: Callable[..., tuple[np.ndarray, np.ndarray]], ) -> list[Observation]: return [ Observation( features=obs.features, data=self._get_relative_data_from_obs(obs, rel_op), arm_name=obs.arm_name, ) for obs in observations ] def _get_relative_data( self, data: ObservationData, status_quo_data: ObservationData, rel_op: Callable[..., tuple[np.ndarray, np.ndarray]], ) -> ObservationData: r""" Relativize or unrelativize `data` based on `status_quo_data` based on `rel_op` Args: data: ObservationData object to relativize status_quo_data: The status quo data (un)relativization is based upon rel_op: relativize or unrelativize operator. control_as_constant: if treating the control metric as constant Returns: (un)relativized ObservationData """ L = len(data.metric_names) result = ObservationData( metric_names=data.metric_names, # zeros are just to create the shape so values can be set by index means=np.zeros(L), covariance=np.zeros((L, L)), ) for i, metric in enumerate(data.metric_names): j = get_metric_index(data=status_quo_data, metric_name=metric) means_t = data.means[i] sems_t = sqrt(data.covariance[i][i]) mean_c = status_quo_data.means[j] sem_c = sqrt(status_quo_data.covariance[j][j]) means_rel, sems_rel = self._get_rel_mean_sem( means_t=means_t, sems_t=sems_t, mean_c=mean_c, sem_c=sem_c, metric=metric, rel_op=rel_op, ) result.means[i] = means_rel result.covariance[i][i] = sems_rel**2 return result def _get_rel_mean_sem( self, means_t: float, sems_t: float, mean_c: float, sem_c: float, metric: str, rel_op: Callable[..., tuple[np.ndarray, np.ndarray]], ) -> Tuple[Union[float, np.ndarray], Union[float, np.ndarray]]: """Compute (un)relativized mean and sem for a single metric.""" # if the is the status quo if means_t == mean_c and sems_t == sem_c: return 0, 0 return rel_op( means_t=means_t, sems_t=sems_t, mean_c=mean_c, sem_c=sem_c, as_percent=True, control_as_constant=self.control_as_constant, )
[docs]def get_metric_index(data: ObservationData, metric_name: str) -> int: """Get the index of a metric in the ObservationData.""" try: return next( k for k, name in enumerate(data.metric_names) if name == metric_name ) except (IndexError, StopIteration): raise ValueError( "Relativization cannot be performed because " "ObservationData for status quo is missing metrics" )
[docs]class Relativize(BaseRelativize): """ Relative transform that by applying delta method. Note that not all valid-valued relativized mean and standard error can be unrelativized when control_as_constant=True. See utils.stats.statstools.unrelativize for more details. """ @property def control_as_constant(self) -> bool: return False
[docs]class RelativizeWithConstantControl(BaseRelativize): """ Relative transform that treats the control metric as a constant when transforming and untransforming the data. """ @property def control_as_constant(self) -> bool: return True