#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# pyre-strict
from __future__ import annotations
from abc import ABC, abstractmethod
from math import sqrt
from typing import Callable, Optional, Tuple, TYPE_CHECKING, Union
import numpy as np
from ax.core.observation import Observation, ObservationData, ObservationFeatures
from ax.core.optimization_config import (
MultiObjectiveOptimizationConfig,
OptimizationConfig,
)
from ax.core.outcome_constraint import OutcomeConstraint
from ax.core.search_space import SearchSpace
from ax.modelbridge import ModelBridge
from ax.modelbridge.transforms.base import Transform
from ax.models.types import TConfig
from ax.utils.common.typeutils import not_none
from ax.utils.stats.statstools import relativize, unrelativize
if TYPE_CHECKING:
# import as module to make sphinx-autodoc-typehints happy
from ax import modelbridge as modelbridge_module # noqa F401
[docs]class BaseRelativize(Transform, ABC):
"""
Change the relative flag of the given relative optimization configuration
to False. This is needed in order for the new opt config to pass ModelBridge
that requires non-relativized opt config.
Also transforms absolute data and opt configs to relative.
Requires a modelbridge with a status quo set to work.
Abstract property control_as_constant is set to True/False in its subclasses
Relativize and RelativizeWithConstantControl respectively to account for
appropriate transform/untransform differently.
"""
def __init__(
self,
search_space: Optional[SearchSpace] = None,
observations: Optional[list[Observation]] = None,
modelbridge: Optional[modelbridge_module.base.ModelBridge] = None,
config: Optional[TConfig] = None,
) -> None:
cls_name = self.__class__.__name__
assert observations is not None, f"{cls_name} requires observations"
super().__init__(
search_space=search_space,
observations=observations,
modelbridge=modelbridge,
config=config,
)
# self.modelbridge should NOT be modified
self.modelbridge: ModelBridge = not_none(
modelbridge, f"{cls_name} transform requires a modelbridge"
)
self.status_quo_data_by_trial: dict[int, ObservationData] = not_none(
self.modelbridge.status_quo_data_by_trial,
f"{cls_name} requires status quo data.",
)
# use latest index of latest observed trial by default
# to handle pending trials, which may not have a trial_index
# if TrialAsTask was not used to generate the trial.
self.default_trial_idx: int = max(self.status_quo_data_by_trial.keys())
@property
@abstractmethod
def control_as_constant(self) -> bool:
"""Whether or not the control is treated as a constant in the model."""
def _get_relative_data_from_obs(
self,
obs: Observation,
rel_op: Callable[..., tuple[np.ndarray, np.ndarray]],
) -> ObservationData:
idx = (
int(obs.features.trial_index)
if obs.features.trial_index is not None
else self.default_trial_idx
)
if idx not in self.status_quo_data_by_trial:
raise ValueError(
f"{self.__class__.__name__} requires status quo data for trial "
f"index {idx}."
)
return self._get_relative_data(
data=obs.data,
status_quo_data=self.status_quo_data_by_trial[idx],
rel_op=rel_op,
)
def _rel_op_on_observations(
self,
observations: list[Observation],
rel_op: Callable[..., tuple[np.ndarray, np.ndarray]],
) -> list[Observation]:
return [
Observation(
features=obs.features,
data=self._get_relative_data_from_obs(obs, rel_op),
arm_name=obs.arm_name,
)
for obs in observations
]
def _get_relative_data(
self,
data: ObservationData,
status_quo_data: ObservationData,
rel_op: Callable[..., tuple[np.ndarray, np.ndarray]],
) -> ObservationData:
r"""
Relativize or unrelativize `data` based on `status_quo_data` based on `rel_op`
Args:
data: ObservationData object to relativize
status_quo_data: The status quo data (un)relativization is based upon
rel_op: relativize or unrelativize operator.
control_as_constant: if treating the control metric as constant
Returns:
(un)relativized ObservationData
"""
L = len(data.metric_names)
result = ObservationData(
metric_names=data.metric_names,
# zeros are just to create the shape so values can be set by index
means=np.zeros(L),
covariance=np.zeros((L, L)),
)
for i, metric in enumerate(data.metric_names):
j = get_metric_index(data=status_quo_data, metric_name=metric)
means_t = data.means[i]
sems_t = sqrt(data.covariance[i][i])
mean_c = status_quo_data.means[j]
sem_c = sqrt(status_quo_data.covariance[j][j])
means_rel, sems_rel = self._get_rel_mean_sem(
means_t=means_t,
sems_t=sems_t,
mean_c=mean_c,
sem_c=sem_c,
metric=metric,
rel_op=rel_op,
)
result.means[i] = means_rel
result.covariance[i][i] = sems_rel**2
return result
def _get_rel_mean_sem(
self,
means_t: float,
sems_t: float,
mean_c: float,
sem_c: float,
metric: str,
rel_op: Callable[..., tuple[np.ndarray, np.ndarray]],
) -> Tuple[Union[float, np.ndarray], Union[float, np.ndarray]]:
"""Compute (un)relativized mean and sem for a single metric."""
# if the is the status quo
if means_t == mean_c and sems_t == sem_c:
return 0, 0
return rel_op(
means_t=means_t,
sems_t=sems_t,
mean_c=mean_c,
sem_c=sem_c,
as_percent=True,
control_as_constant=self.control_as_constant,
)
[docs]def get_metric_index(data: ObservationData, metric_name: str) -> int:
"""Get the index of a metric in the ObservationData."""
try:
return next(
k for k, name in enumerate(data.metric_names) if name == metric_name
)
except (IndexError, StopIteration):
raise ValueError(
"Relativization cannot be performed because "
"ObservationData for status quo is missing metrics"
)
[docs]class Relativize(BaseRelativize):
"""
Relative transform that by applying delta method.
Note that not all valid-valued relativized mean and
standard error can be unrelativized when control_as_constant=True.
See utils.stats.statstools.unrelativize for more details.
"""
@property
def control_as_constant(self) -> bool:
return False
[docs]class RelativizeWithConstantControl(BaseRelativize):
"""
Relative transform that treats the control metric as a constant when transforming
and untransforming the data.
"""
@property
def control_as_constant(self) -> bool:
return True