Source code for ax.modelbridge.transforms.derelativize

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

from logging import Logger
from typing import Optional, TYPE_CHECKING

import numpy as np
from ax.core.observation import ObservationFeatures
from ax.core.optimization_config import OptimizationConfig
from ax.core.outcome_constraint import OutcomeConstraint, ScalarizedOutcomeConstraint
from ax.exceptions.core import DataRequiredError
from ax.modelbridge.base import unwrap_observation_data
from ax.modelbridge.transforms.base import Transform
from ax.modelbridge.transforms.ivw import ivw_metric_merge
from ax.utils.common.logger import get_logger
from ax.utils.common.typeutils import not_none


if TYPE_CHECKING:
    # import as module to make sphinx-autodoc-typehints happy
    from ax import modelbridge as modelbridge_module  # noqa F401


logger: Logger = get_logger(__name__)


[docs]class Derelativize(Transform): """Changes relative constraints to not-relative constraints using a plug-in estimate of the status quo value. If status quo is in-design, uses model estimate at status quo. If not, uses raw observation at status quo. Will raise an error if status quo is in-design and model fails to predict for it, unless the flag "use_raw_status_quo" is set to True in the transform config, in which case it will fall back to using the observed value in the training data. Transform is done in-place. """
[docs] def transform_optimization_config( self, optimization_config: OptimizationConfig, modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None, fixed_features: Optional[ObservationFeatures] = None, ) -> OptimizationConfig: use_raw_sq = self.config.get("use_raw_status_quo", False) has_relative_constraint = any( c.relative for c in optimization_config.all_constraints ) if not has_relative_constraint: return optimization_config # Else, we have at least one relative constraint. # Estimate the value at the status quo. if modelbridge is None: raise ValueError("ModelBridge not supplied to transform.") # Unobserved status quo corresponds to a modelbridge.status_quo of None. if modelbridge.status_quo is None: raise DataRequiredError( "Optimization config has relative constraint, but model was " "not fit with status quo." ) sq = not_none(modelbridge.status_quo) # Only use model predictions if the status quo is in the search space (including # parameter constraints) and `use_raw_sq` is false. if not use_raw_sq and modelbridge.model_space.check_membership( sq.features.parameters ): f, _ = modelbridge.predict([sq.features]) else: sq_data = ivw_metric_merge(obsd=sq.data, conflicting_noiseless="raise") f, _ = unwrap_observation_data([sq_data]) # Plug in the status quo value to each relative constraint. for c in optimization_config.all_constraints: if c.relative: if isinstance(c, ScalarizedOutcomeConstraint): missing_metrics = { metric.name for metric in c.metrics if metric.name not in f } if len(missing_metrics) > 0: raise DataRequiredError( f"Status-quo metric value not yet available for metric(s) " f"{missing_metrics}." ) # The sq_val of scalarized outcome is the weighted # sum of its component metrics sq_val = np.sum( [ c.weights[i] * f[metric.name][0] for i, metric in enumerate(c.metrics) ] ) elif c.metric.name in f: sq_val = f[c.metric.name][0] else: raise DataRequiredError( f"Status-quo metric value not yet available for metric " f"{c.metric.name}." ) c.bound = (1 + c.bound / 100.0) * sq_val c.relative = False return optimization_config
[docs] def untransform_outcome_constraints( self, outcome_constraints: list[OutcomeConstraint], fixed_features: Optional[ObservationFeatures] = None, ) -> list[OutcomeConstraint]: # We intentionally leave outcome constraints derelativized when # untransforming. return outcome_constraints