Adaptive Experimentation Platform
Key Features
Modular
Easy to plug in new algorithms and use the library across different domains.
Supports A/B Tests
Field experiments require a range of considerations beyond standard optimization problems.
Production-Ready
Support for industry-grade experimentation and optimization management, including MySQL storage.
Get Started
- Install Ax:
- Linux
- Mac
pip3 install ax-platform
conda install pytorch torchvision -c pytorch
pip3 install ax-platform - Run an optimization:
>>> from ax import *
>>> client = Client()
>>> client.configure_experiment(
experiment_config=ExperimentConfig(
name="booth_function",
parameters=[
RangeParameterConfig(
name="x1",
bounds=(-10.0, 10.0),
parameter_type=ParameterType.FLOAT,
),
RangeParameterConfig(
name="x2",
bounds=(-10.0, 10.0),
parameter_type=ParameterType.FLOAT,
),
],
)
)
>>> client.configure_optimization(objective="-1 * booth")
>>> for _ in range(20):
>>> for trial_index, parameters in client.get_next_trials(max_trials=1).items():
>>> client.complete_trial(
>>> trial_index=trial_index,
>>> raw_data={
>>> "booth": (parameters["x1"] + 2 * parameters["x2"] - 7) ** 2
>>> + (2 * parameters["x1"] + parameters["x2"] - 5) ** 2
>>> },
>>> )
>>> client.get_best_parameterization()
{'x1': 1.02, 'x2': 2.97} # true min is (1, 3)