Adaptive Experimentation Platform
Key Features
Modular
Easy to plug in new algorithms and use the library across different domains.
Supports A/B Tests
Field experiments require a range of considerations beyond standard optimization problems.
Production-Ready
Support for industry-grade experimentation and optimization management, including MySQL storage.
Get Started
- Install Ax:
- Linux
- Mac
pip3 install ax-platform
conda install pytorch -c pytorch
pip3 install ax-platform - Run an optimization:
>>> from ax import Client, RangeParameterConfig
>>> client = Client()
>>> client.configure_experiment(
parameters=[
RangeParameterConfig(
name="x1",
bounds=(-10.0, 10.0),
parameter_type="float",
),
RangeParameterConfig(
name="x2",
bounds=(-10.0, 10.0),
parameter_type="float",
),
],
)
>>> client.configure_optimization(objective="-1 * booth")
>>> for _ in range(20):
>>> for trial_index, parameters in client.get_next_trials(max_trials=1).items():
>>> client.complete_trial(
>>> trial_index=trial_index,
>>> raw_data={
>>> "booth": (parameters["x1"] + 2 * parameters["x2"] - 7) ** 2
>>> + (2 * parameters["x1"] + parameters["x2"] - 5) ** 2
>>> },
>>> )
>>> client.get_best_parameterization()
{'x1': 1.02, 'x2': 2.97} # true min is (1, 3)
References
Ax: A Platform for Adaptive Experimentation
@inproceedings{olson2025ax,
title = {{Ax: A Platform for Adaptive Experimentation}},
author = {
Olson, Miles and Santorella, Elizabeth and Tiao, Louis C. and
Cakmak, Sait and Eriksson, David and Garrard, Mia and Daulton, Sam and
Balandat, Maximilian and Bakshy, Eytan and Kashtelyan, Elena and
Lin, Zhiyuan Jerry and Ament, Sebastian and Beckerman, Bernard and
Onofrey, Eric and Igusti, Paschal and Lara, Cristian and
Letham, Benjamin and Cardoso, Cesar and Shen, Shiyun Sunny and
Lin, Andy Chenyuan and Grange, Matthew
},
booktitle = {AutoML 2025 ABCD Track},
year = {2025}
}