Source code for ax.core.optimization_config

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from itertools import groupby
from typing import Dict, List, Optional

from ax.core.metric import Metric
from ax.core.objective import MultiObjective, Objective
from ax.core.outcome_constraint import (
    ComparisonOp,
    ObjectiveThreshold,
    OutcomeConstraint,
)
from ax.utils.common.base import Base
from ax.utils.common.logger import get_logger


logger = get_logger(__name__)

TRefPoint = List[ObjectiveThreshold]

OC_TEMPLATE: str = (
    "OptimizationConfig(objective={objective}, outcome_constraints=[{constraints}])"
)
MOOC_TEMPLATE: str = (
    "OptimizationConfig(objective={objective}, outcome_constraints=[{constraints}], "
    "objective_thresholds=[{thresholds}])"
)


[docs]class OptimizationConfig(Base): """An optimization configuration, which comprises an objective and outcome constraints. There is no minimum or maximum number of outcome constraints, but an individual metric can have at most two constraints--which is how we represent metrics with both upper and lower bounds. """ def __init__( self, objective: Objective, outcome_constraints: Optional[List[OutcomeConstraint]] = None, ) -> None: """Inits OptimizationConfig. Args: objective: Metric+direction to use for the optimization. outcome_constraints: Constraints on metrics. """ constraints: List[OutcomeConstraint] = ( [] if outcome_constraints is None else outcome_constraints ) self._validate_optimization_config( objective=objective, outcome_constraints=constraints ) self._objective: Objective = objective self._outcome_constraints: List[OutcomeConstraint] = constraints
[docs] def clone(self) -> "OptimizationConfig": """Make a copy of this optimization config.""" return self.clone_with_args()
[docs] def clone_with_args( self, objective: Optional[Objective] = None, outcome_constraints: Optional[List[OutcomeConstraint]] = None, ) -> "OptimizationConfig": """Make a copy of this optimization config.""" objective = objective or self.objective.clone() outcome_constraints = outcome_constraints or [ constraint.clone() for constraint in self.outcome_constraints ] return OptimizationConfig( objective=objective, outcome_constraints=outcome_constraints )
@property def objective(self) -> Objective: """Get objective.""" return self._objective @objective.setter def objective(self, objective: Objective) -> None: """Set objective if not present in outcome constraints.""" self._validate_optimization_config(objective, self.outcome_constraints) self._objective = objective @property def all_constraints(self) -> List[OutcomeConstraint]: """Get outcome constraints.""" return self.outcome_constraints @property def outcome_constraints(self) -> List[OutcomeConstraint]: """Get outcome constraints.""" return self._outcome_constraints @property def metrics(self) -> Dict[str, Metric]: constraint_metrics = { oc.metric.name: oc.metric for oc in self._outcome_constraints } objective_metrics = {metric.name: metric for metric in self.objective.metrics} return {**constraint_metrics, **objective_metrics} @outcome_constraints.setter def outcome_constraints(self, outcome_constraints: List[OutcomeConstraint]) -> None: """Set outcome constraints if valid, else raise.""" self._validate_optimization_config( objective=self.objective, outcome_constraints=outcome_constraints ) self._outcome_constraints = outcome_constraints @staticmethod def _validate_optimization_config( objective: Objective, outcome_constraints: Optional[List[OutcomeConstraint]] = None, ) -> None: """Ensure outcome constraints are valid. Either one or two outcome constraints can reference one metric. If there are two constraints, they must have different 'ops': one LEQ and one GEQ. If there are two constraints, the bound of the GEQ op must be less than the bound of the LEQ op. Args: outcome_constraints: Constraints to validate. """ if type(objective) == MultiObjective: # Raise error on exact equality; scalarizedObjective is OK raise ValueError( ( "OptimizationConfig does not support MultiObjective. " "Use MultiObjectiveOptimizationConfig instead." ) ) outcome_constraints = outcome_constraints or [] unconstrainable_metrics = objective.get_unconstrainable_metrics() OptimizationConfig._validate_outcome_constraints( unconstrainable_metrics=unconstrainable_metrics, outcome_constraints=outcome_constraints, ) @staticmethod def _validate_outcome_constraints( unconstrainable_metrics: List[Metric], outcome_constraints: List[OutcomeConstraint], ) -> None: constraint_metrics = [ constraint.metric.name for constraint in outcome_constraints ] for metric in unconstrainable_metrics: if metric.name in constraint_metrics: raise ValueError("Cannot constrain on objective metric.") def get_metric_name(oc: OutcomeConstraint) -> str: return oc.metric.name sorted_constraints = sorted(outcome_constraints, key=get_metric_name) for metric_name, constraints_itr in groupby( sorted_constraints, get_metric_name ): constraints: List[OutcomeConstraint] = list(constraints_itr) constraints_len = len(constraints) if constraints_len == 2: if constraints[0].op == constraints[1].op: raise ValueError(f"Duplicate outcome constraints {metric_name}") lower_bound_idx = 0 if constraints[0].op == ComparisonOp.GEQ else 1 upper_bound_idx = 1 - lower_bound_idx lower_bound = constraints[lower_bound_idx].bound upper_bound = constraints[upper_bound_idx].bound if lower_bound >= upper_bound: raise ValueError( f"Lower bound {lower_bound} is >= upper bound " + f"{upper_bound} for {metric_name}" ) elif constraints_len > 2: raise ValueError(f"Duplicate outcome constraints {metric_name}") def __repr__(self) -> str: return OC_TEMPLATE.format( objective=repr(self.objective), constraints=", ".join( constraint.__repr__() for constraint in self.outcome_constraints ), )
[docs]class MultiObjectiveOptimizationConfig(OptimizationConfig): """An optimization configuration for multi-objective optimization, which comprises multiple objective, outcome constraints, and objective thresholds. There is no minimum or maximum number of outcome constraints, but an individual metric can have at most two constraints--which is how we represent metrics with both upper and lower bounds. ObjectiveThresholds should be present for every objective. A good rule of thumb is to set them 10% below the minimum acceptable value for each metric. """ def __init__( self, objective: Objective, outcome_constraints: Optional[List[OutcomeConstraint]] = None, objective_thresholds: Optional[List[ObjectiveThreshold]] = None, ) -> None: """Inits OptimizationConfig. Args: objective: Metric+direction to use for the optimization. outcome_constraints: Constraints on metrics. objective_thesholds: Thresholds objectives must exceed. Used for multi-objective optimization and for calculating frontiers and hypervolumes. """ constraints: List[OutcomeConstraint] = ( [] if outcome_constraints is None else outcome_constraints ) objective_thresholds = objective_thresholds or [] self._validate_optimization_config( objective=objective, outcome_constraints=constraints, objective_thresholds=objective_thresholds, ) self._objective: Objective = objective self._outcome_constraints: List[OutcomeConstraint] = constraints self._objective_thresholds: List[ObjectiveThreshold] = objective_thresholds
[docs] def clone_with_args( self, objective: Optional[Objective] = None, outcome_constraints: Optional[List[OutcomeConstraint]] = None, objective_thresholds: Optional[List[ObjectiveThreshold]] = None, ) -> "MultiObjectiveOptimizationConfig": """Make a copy of this optimization config.""" objective = objective or self.objective.clone() outcome_constraints = outcome_constraints or [ constraint.clone() for constraint in self.outcome_constraints ] objective_thresholds = objective_thresholds or [ ot.clone() for ot in self.objective_thresholds ] return MultiObjectiveOptimizationConfig( objective=objective, outcome_constraints=outcome_constraints, objective_thresholds=objective_thresholds, )
@property def objective(self) -> Objective: """Get objective.""" return self._objective @objective.setter def objective(self, objective: Objective) -> None: """Set objective if not present in outcome constraints.""" self._validate_optimization_config( objective=objective, outcome_constraints=self.outcome_constraints, objective_thresholds=self.objective_thresholds, ) self._objective = objective @property def all_constraints(self) -> List[OutcomeConstraint]: """Get all constraints and thresholds.""" # pyre-ignore[58]: `+` not supported for Lists of different types. return self.outcome_constraints + self.objective_thresholds @property def metrics(self) -> Dict[str, Metric]: constraint_metrics = {oc.metric.name: oc.metric for oc in self.all_constraints} objective_metrics = {metric.name: metric for metric in self.objective.metrics} return {**constraint_metrics, **objective_metrics} @property def objective_thresholds(self) -> List[ObjectiveThreshold]: """Get objective thresholds.""" return self._objective_thresholds @objective_thresholds.setter def objective_thresholds( self, objective_thresholds: List[ObjectiveThreshold] ) -> None: """Set outcome constraints if valid, else raise.""" self._validate_optimization_config( objective=self.objective, objective_thresholds=objective_thresholds ) self._objective_thresholds = objective_thresholds @staticmethod def _validate_optimization_config( objective: Objective, outcome_constraints: Optional[List[OutcomeConstraint]] = None, objective_thresholds: Optional[List[ObjectiveThreshold]] = None, ) -> None: """Ensure outcome constraints are valid. Either one or two outcome constraints can reference one metric. If there are two constraints, they must have different 'ops': one LEQ and one GEQ. If there are two constraints, the bound of the GEQ op must be less than the bound of the LEQ op. Args: outcome_constraints: Constraints to validate. """ if not isinstance(objective, MultiObjective): raise TypeError( ( "`MultiObjectiveOptimizationConfig` requires an objective " "of type `MultiObjective`. Use `OptimizationConfig` instead " "if using a single-metric objective." ) ) outcome_constraints = outcome_constraints or [] objective_thresholds = objective_thresholds or [] # Verify we aren't optimizing too many objectives. objective_metrics_by_name = { metric.name: metric for metric in objective.metrics } # Warn if thresholds on objective_metrics bound from the wrong direction. for threshold in objective_thresholds: metric_name = threshold.metric.name if metric_name in objective_metrics_by_name: lower_is_better = threshold.metric.lower_is_better bounded_above = threshold.op == ComparisonOp.LEQ is_aligned = lower_is_better == bounded_above if not (is_aligned or lower_is_better is None): raise ValueError( make_wrong_direction_warning( metric_name=metric_name, bounded_above=bounded_above, lower_is_better=lower_is_better, ) ) unconstrainable_metrics = objective.get_unconstrainable_metrics() OptimizationConfig._validate_outcome_constraints( unconstrainable_metrics=unconstrainable_metrics, outcome_constraints=outcome_constraints, ) def __repr__(self) -> str: return MOOC_TEMPLATE.format( objective=repr(self.objective), constraints=", ".join( constraint.__repr__() for constraint in self.outcome_constraints ), thresholds=", ".join( threshold.__repr__() for threshold in self.objective_thresholds ), )
[docs]def make_wrong_direction_warning( metric_name: str, bounded_above: bool, lower_is_better: Optional[bool] ) -> str: return ( f"Constraint on {metric_name} bounds from " f"{'above' if bounded_above else 'below'} " f"but {metric_name} is being " f"{'minimized' if lower_is_better else 'maximized'}." ).format(metric_name)