Source code for ax.utils.testing.torch_stubs
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# pyre-strict
from __future__ import annotations
from typing import Any
import torch
[docs]
def get_torch_test_data(
dtype: torch.dtype = torch.float,
cuda: bool = False,
constant_noise: bool = True,
task_features: list[int] | None = None,
offset: float = 0.0,
) -> tuple[
list[torch.Tensor],
list[torch.Tensor],
list[torch.Tensor],
list[tuple[float, float]],
list[int],
list[str],
list[str],
]:
tkwargs: dict[str, Any] = {
"device": torch.device("cuda" if cuda else "cpu"),
"dtype": dtype,
}
Xs = [
torch.tensor(
[
[1.0 + offset, 2.0 + offset, 3.0 + offset],
[2.0 + offset, 3.0 + offset, 4.0 + offset],
],
**tkwargs,
)
]
Ys = [torch.tensor([[3.0 + offset], [4.0 + offset]], **tkwargs)]
if constant_noise:
Yvar = torch.ones(2, 1, **tkwargs)
else:
Yvar = torch.tensor([[0.0 + offset], [2.0 + offset]], **tkwargs)
Yvars = [Yvar]
bounds = [
(0.0 + offset, 1.0 + offset),
(1.0 + offset, 4.0 + offset),
(2.0 + offset, 5.0 + offset),
]
feature_names = ["x1", "x2", "x3"]
task_features = [] if task_features is None else task_features
metric_names = ["y"]
return Xs, Ys, Yvars, bounds, task_features, feature_names, metric_names