Source code for ax.utils.measurement.synthetic_functions

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

from abc import ABC, abstractmethod
from typing import TypeVar

import numpy as np
import numpy.typing as npt
import torch
from ax.utils.common.docutils import copy_doc
from ax.utils.common.typeutils import checked_cast
from botorch.test_functions import synthetic as botorch_synthetic
from pyre_extensions import none_throws, override

T = TypeVar("T")


[docs] class SyntheticFunction(ABC): _required_dimensionality: int _domain: list[tuple[float, float]] _minimums: list[tuple[float, ...]] | None = None _maximums: list[tuple[float, ...]] | None = None _fmin: float | None = None _fmax: float | None = None
[docs] def informative_failure_on_none(self, attr: T | None) -> T: if attr is None: raise NotImplementedError(f"{self.name} does not specify property.") return none_throws(attr)
@property def name(self) -> str: return self.__class__.__name__ def __call__( self, *args: int | float | npt.NDArray, **kwargs: int | float | npt.NDArray, ) -> float | npt.NDArray: """Simplified way to call the synthetic function and pass the argument numbers directly, e.g. `branin(2.0, 3.0)`. """ if kwargs: if self.required_dimensionality: assert ( len(kwargs) == self.required_dimensionality or len(kwargs) == 1 ), ( f"Function {self.name} expected either " f"{self.required_dimensionality} arguments " "or a single numpy array argument." ) assert not args, ( f"Function {self.name} expected either all anonymous " "arguments or all keyword arguments." ) args = list(kwargs.values()) # pyre-ignore[9] for x in args: if isinstance(x, np.ndarray): return self.f(X=x) assert np.isscalar( x ), f"Expected numerical arguments or numpy arrays, got {type(x)}." if isinstance(x, int): x = float(x) return checked_cast(float, self.f(np.array(args)))
[docs] def f(self, X: npt.NDArray) -> float | npt.NDArray: """Synthetic function implementation. Args: X (numpy.ndarray): an n by d array, where n represents the number of observations and d is the dimensionality of the inputs. Returns: numpy.ndarray: an n-dimensional array. """ assert isinstance(X, np.ndarray), "X must be a numpy (nd)array." if self.required_dimensionality: if len(X.shape) == 1: input_dim = X.shape[0] elif len(X.shape) == 2: input_dim = X.shape[1] else: raise ValueError( "Synthetic function call expects input of either 1-d array or " "n by d array, where n is number of observations and d is " "dimensionality of the input." ) assert input_dim == self.required_dimensionality, ( f"Input violates required dimensionality of {self.name}: " f"{self.required_dimensionality}. Got {input_dim}." ) X = X.astype(np.float64) if len(X.shape) == 1: return self._f(X=X) else: return np.array([self._f(X=x) for x in X])
@property def required_dimensionality(self) -> int: """Required dimensionality of input to this function.""" return self._required_dimensionality @property def domain(self) -> list[tuple[float, float]]: """Domain on which function is evaluated. The list is of the same length as the dimensionality of the inputs, where each element of the list is a tuple corresponding to the min and max of the domain for that dimension. """ return self._domain @property def minimums(self) -> list[tuple[float, ...]]: """List of global minimums. Each element of the list is a d-tuple, where d is the dimensionality of the inputs. There may be more than one global minimums. """ return self.informative_failure_on_none(self._minimums) @property def maximums(self) -> list[tuple[float, ...]]: """List of global minimums. Each element of the list is a d-tuple, where d is the dimensionality of the inputs. There may be more than one global minimums. """ return self.informative_failure_on_none(self._maximums) @property def fmin(self) -> float: """Value at global minimum(s).""" return self.informative_failure_on_none(self._fmin) @property def fmax(self) -> float: """Value at global minimum(s).""" return self.informative_failure_on_none(self._fmax) @abstractmethod def _f(self, X: npt.NDArray) -> float: """Implementation of the synthetic function. Must be implemented in subclass. Args: X: A one-dimensional array with `d` elements, where d is the dimensionality of the inputs. Returns: float: Function value. """ ...
[docs] class FromBotorch(SyntheticFunction): def __init__( self, botorch_synthetic_function: botorch_synthetic.SyntheticTestFunction ) -> None: self._botorch_function = botorch_synthetic_function self._required_dimensionality: int = self._botorch_function.dim self._domain: list[tuple[float, float]] = self._botorch_function._bounds self._fmin: float | None = self._botorch_function._optimal_value @override @property def name(self) -> str: return f"{self.__class__.__name__}_{self._botorch_function.__class__.__name__}" @override def _f(self, X: npt.NDArray) -> float: # TODO: support batch evaluation return float(self._botorch_function(X=torch.from_numpy(X)).item())
[docs] def from_botorch( botorch_synthetic_function: botorch_synthetic.SyntheticTestFunction, ) -> SyntheticFunction: """Utility to generate Ax synthetic functions from BoTorch synthetic functions.""" return FromBotorch(botorch_synthetic_function=botorch_synthetic_function)
[docs] class Hartmann6(SyntheticFunction): """Hartmann6 function (6-dimensional with 1 global minimum).""" _required_dimensionality = 6 _domain: list[tuple[float, float]] = [(0.0, 1.0) for i in range(6)] _minimums = [(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573)] _fmin: float = -3.32237 _fmax = 0.0 _alpha: npt.NDArray = np.array([1.0, 1.2, 3.0, 3.2]) _A: npt.NDArray = np.array( [ [10, 3, 17, 3.5, 1.7, 8], [0.05, 10, 17, 0.1, 8, 14], [3, 3.5, 1.7, 10, 17, 8], [17, 8, 0.05, 10, 0.1, 14], ] ) _P: npt.NDArray = 10 ** (-4) * np.array( [ [1312, 1696, 5569, 124, 8283, 5886], [2329, 4135, 8307, 3736, 1004, 9991], [2348, 1451, 3522, 2883, 3047, 6650], [4047, 8828, 8732, 5743, 1091, 381], ] ) @override @copy_doc(SyntheticFunction._f) def _f(self, X: npt.NDArray) -> float: y = 0.0 for j, alpha_j in enumerate(self._alpha): t = 0 for k in range(6): t += self._A[j, k] * ((X[k] - self._P[j, k]) ** 2) y -= alpha_j * np.exp(-t) return float(y)
[docs] class Aug_Hartmann6(Hartmann6): """Augmented Hartmann6 function (7-dimensional with 1 global minimum).""" _required_dimensionality = 7 _domain: list[tuple[float, float]] = [(0.0, 1.0) for i in range(7)] # pyre-fixme[15]: `_minimums` overrides attribute defined in `Hartmann6` # inconsistently. _minimums = [(0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.6573, 1.0)] _fmin: float = -3.32237 _fmax = 0.0 @override @copy_doc(SyntheticFunction._f) def _f(self, X: npt.NDArray) -> float: y = 0.0 alpha_0 = self._alpha[0] - 0.1 * (1 - X[-1]) for j, alpha_j in enumerate(self._alpha): t = 0 for k in range(6): t += self._A[j, k] * ((X[k] - self._P[j, k]) ** 2) if j == 0: y -= alpha_0 * np.exp(-t) else: y -= alpha_j * np.exp(-t) return float(y)
[docs] class Branin(SyntheticFunction): """Branin function (2-dimensional with 3 global minima).""" _required_dimensionality = 2 _domain: list[tuple[float, float]] = [(-5.0, 10.0), (0.0, 15.0)] _minimums: list[tuple[float, float]] = [ (-np.pi, 12.275), (np.pi, 2.275), (9.42478, 2.475), ] _fmin = 0.397887 _fmax = 308.129 @override @copy_doc(SyntheticFunction._f) def _f(self, X: npt.NDArray) -> float: x_1 = X[0] x_2 = X[1] return float( (x_2 - 5.1 / (4 * np.pi**2) * x_1**2 + 5.0 / np.pi * x_1 - 6.0) ** 2 + 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x_1) + 10 )
[docs] class Aug_Branin(SyntheticFunction): """Augmented Branin function (3-dimensional with infinitely many global minima).""" _required_dimensionality = 3 _domain: list[tuple[float, float]] = [(-5.0, 10.0), (0.0, 15.0), (0.0, 1.0)] _minimums: list[tuple[float, float, float]] = [ (-np.pi, 12.275, 1.0), (np.pi, 2.275, 1.0), (9.42478, 2.475, 1.0), ] _fmin = 0.397887 _fmax = 308.129 @override @copy_doc(SyntheticFunction._f) def _f(self, X: npt.NDArray) -> float: x_1 = X[0] x_2 = X[1] return float( ( x_2 - (5.1 / (4 * np.pi**2) - 0.1 * (1 - X[-1])) * x_1**2 + 5.0 / np.pi * x_1 - 6.0 ) ** 2 + 10 * (1 - 1.0 / (8 * np.pi)) * np.cos(x_1) + 10 )
hartmann6 = Hartmann6() aug_hartmann6 = Aug_Hartmann6() branin = Branin() aug_branin = Aug_Branin() # Synthetic functions constructed from BoTorch. ackley: SyntheticFunction = from_botorch( botorch_synthetic_function=botorch_synthetic.Ackley() )