Source code for ax.storage.sqa_store.decoder

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

import json
from collections import defaultdict, OrderedDict
from enum import Enum
from io import StringIO
from logging import Logger
from typing import cast, Union

import pandas as pd
from ax.analysis.analysis import AnalysisCard

from ax.core.arm import Arm
from ax.core.auxiliary import AuxiliaryExperiment, AuxiliaryExperimentPurpose
from ax.core.base_trial import BaseTrial, TrialStatus
from ax.core.batch_trial import AbandonedArm, BatchTrial, GeneratorRunStruct
from ax.core.data import Data
from ax.core.experiment import Experiment
from ax.core.generator_run import GeneratorRun, GeneratorRunType
from ax.core.metric import Metric
from ax.core.multi_type_experiment import MultiTypeExperiment
from ax.core.objective import MultiObjective, Objective, ScalarizedObjective
from ax.core.optimization_config import (
    MultiObjectiveOptimizationConfig,
    OptimizationConfig,
)
from ax.core.outcome_constraint import (
    ObjectiveThreshold,
    OutcomeConstraint,
    ScalarizedOutcomeConstraint,
)
from ax.core.parameter import ChoiceParameter, FixedParameter, Parameter, RangeParameter
from ax.core.parameter_constraint import (
    OrderConstraint,
    ParameterConstraint,
    SumConstraint,
)
from ax.core.parameter_distribution import ParameterDistribution
from ax.core.risk_measures import RiskMeasure
from ax.core.runner import Runner
from ax.core.search_space import HierarchicalSearchSpace, RobustSearchSpace, SearchSpace
from ax.core.trial import Trial
from ax.exceptions.storage import JSONDecodeError, SQADecodeError
from ax.modelbridge.generation_strategy import GenerationStrategy
from ax.storage.json_store.decoder import object_from_json
from ax.storage.sqa_store.db import session_scope
from ax.storage.sqa_store.sqa_classes import (
    SQAAbandonedArm,
    SQAAnalysisCard,
    SQAArm,
    SQAData,
    SQAExperiment,
    SQAGenerationStrategy,
    SQAGeneratorRun,
    SQAMetric,
    SQAParameter,
    SQAParameterConstraint,
    SQARunner,
    SQATrial,
)
from ax.storage.sqa_store.sqa_config import SQAConfig
from ax.storage.utils import DomainType, MetricIntent, ParameterConstraintType
from ax.utils.common.constants import Keys
from ax.utils.common.logger import get_logger
from pandas import read_json
from pyre_extensions import assert_is_instance, none_throws
from sqlalchemy.orm.exc import DetachedInstanceError

logger: Logger = get_logger(__name__)


[docs] class Decoder: """Class that contains methods for loading an Ax experiment from SQLAlchemy. Instantiate with an instance of Config to customize the functionality. For even more flexibility, create a subclass. Attributes: config: Metadata needed to save and load an experiment to SQLAlchemy. """ def __init__(self, config: SQAConfig) -> None: self.config = config
[docs] def get_enum_name( self, value: int | None, enum: Enum | type[Enum] | None ) -> str | None: """Given an enum value (int) and an enum (of ints), return the corresponding enum name. If the value is not present in the enum, throw an error. """ if value is None or enum is None: return None try: return enum(value).name # pyre-ignore T29651755 except ValueError: raise SQADecodeError(f"Value {value} is invalid for enum {enum}.")
def _auxiliary_experiments_by_purpose_from_experiment_sqa( self, experiment_sqa: SQAExperiment ) -> dict[AuxiliaryExperimentPurpose, list[AuxiliaryExperiment]] | None: auxiliary_experiments_by_purpose = None if experiment_sqa.auxiliary_experiments_by_purpose: from ax.storage.sqa_store.load import load_experiment auxiliary_experiments_by_purpose = {} aux_exp_name_dict = none_throws( experiment_sqa.auxiliary_experiments_by_purpose ) for aux_exp_purpose_str, aux_exp_names in aux_exp_name_dict.items(): aux_exp_purpose = next( member for member in self.config.auxiliary_experiment_purpose_enum if member.value == aux_exp_purpose_str ) auxiliary_experiments_by_purpose[aux_exp_purpose] = [] for aux_exp_name in aux_exp_names: auxiliary_experiments_by_purpose[aux_exp_purpose].append( AuxiliaryExperiment( experiment=load_experiment( aux_exp_name, config=self.config, skip_runners_and_metrics=True, load_auxiliary_experiments=False, ) ) ) return auxiliary_experiments_by_purpose def _init_experiment_from_sqa( self, experiment_sqa: SQAExperiment, load_auxiliary_experiments: bool = True, ) -> Experiment: """First step of conversion within experiment_from_sqa.""" opt_config, tracking_metrics = self.opt_config_and_tracking_metrics_from_sqa( metrics_sqa=experiment_sqa.metrics ) search_space = self.search_space_from_sqa( parameters_sqa=experiment_sqa.parameters, parameter_constraints_sqa=experiment_sqa.parameter_constraints, ) if search_space is None: raise SQADecodeError("Experiment SearchSpace cannot be None.") status_quo = ( Arm( parameters=experiment_sqa.status_quo_parameters, name=experiment_sqa.status_quo_name, ) if experiment_sqa.status_quo_parameters is not None else None ) if len(experiment_sqa.runners) == 0: runner = None elif len(experiment_sqa.runners) == 1: runner = self.runner_from_sqa(runner_sqa=experiment_sqa.runners[0]) else: raise ValueError( "Multiple runners on experiment " "only supported for MultiTypeExperiment." ) # `experiment_sqa.properties` is `sqlalchemy.ext.mutable.MutableDict` # so need to convert it to regular dict. properties = dict(experiment_sqa.properties or {}) default_data_type = experiment_sqa.default_data_type auxiliary_experiments_by_purpose = ( ( self._auxiliary_experiments_by_purpose_from_experiment_sqa( experiment_sqa=experiment_sqa ) ) if load_auxiliary_experiments else {} ) return Experiment( name=experiment_sqa.name, description=experiment_sqa.description, search_space=search_space, optimization_config=opt_config, tracking_metrics=tracking_metrics, runner=runner, status_quo=status_quo, is_test=experiment_sqa.is_test, properties=properties, default_data_type=default_data_type, auxiliary_experiments_by_purpose=auxiliary_experiments_by_purpose, ) def _init_mt_experiment_from_sqa( self, experiment_sqa: SQAExperiment ) -> MultiTypeExperiment: """First step of conversion within experiment_from_sqa.""" opt_config, tracking_metrics = self.opt_config_and_tracking_metrics_from_sqa( metrics_sqa=experiment_sqa.metrics ) search_space = self.search_space_from_sqa( parameters_sqa=experiment_sqa.parameters, parameter_constraints_sqa=experiment_sqa.parameter_constraints, ) if search_space is None: raise SQADecodeError("Experiment SearchSpace cannot be None.") status_quo = ( Arm( parameters=experiment_sqa.status_quo_parameters, name=experiment_sqa.status_quo_name, ) if experiment_sqa.status_quo_parameters is not None else None ) trial_type_to_runner = { none_throws(sqa_runner.trial_type): self.runner_from_sqa(sqa_runner) for sqa_runner in experiment_sqa.runners } default_trial_type = none_throws(experiment_sqa.default_trial_type) properties = dict(experiment_sqa.properties or {}) default_data_type = experiment_sqa.default_data_type experiment = MultiTypeExperiment( name=experiment_sqa.name, description=experiment_sqa.description, search_space=search_space, default_trial_type=default_trial_type, default_runner=trial_type_to_runner[default_trial_type], optimization_config=opt_config, status_quo=status_quo, properties=properties, default_data_type=default_data_type, ) experiment._trial_type_to_runner = trial_type_to_runner sqa_metric_dict = {metric.name: metric for metric in experiment_sqa.metrics} for tracking_metric in tracking_metrics: sqa_metric = sqa_metric_dict[tracking_metric.name] experiment.add_tracking_metric( tracking_metric, trial_type=none_throws(sqa_metric.trial_type), canonical_name=sqa_metric.canonical_name, ) return experiment
[docs] def experiment_from_sqa( self, experiment_sqa: SQAExperiment, reduced_state: bool = False, load_auxiliary_experiments: bool = True, ) -> Experiment: """Convert SQLAlchemy Experiment to Ax Experiment. Args: experiment_sqa: `SQAExperiment` to decode. reduced_state: Whether to load experiment with a slightly reduced state (without abandoned arms on experiment and without model state, search space, and optimization config on generator runs). load_auxiliary_experiment: whether to load auxiliary experiments. """ subclass = (experiment_sqa.properties or {}).get(Keys.SUBCLASS) if subclass == "MultiTypeExperiment": experiment = self._init_mt_experiment_from_sqa(experiment_sqa) else: experiment = self._init_experiment_from_sqa( experiment_sqa, load_auxiliary_experiments=load_auxiliary_experiments, ) trials = [ self.trial_from_sqa( trial_sqa=trial, experiment=experiment, reduced_state=reduced_state, ) for trial in experiment_sqa.trials ] data_by_trial = defaultdict(dict) for data_sqa in experiment_sqa.data: trial_index = data_sqa.trial_index timestamp = data_sqa.time_created # TODO: Use metrics-like Data type field in Data instead. default_data_constructor = experiment.default_data_constructor data_by_trial[trial_index][timestamp] = self.data_from_sqa( data_sqa=data_sqa, data_constructor=default_data_constructor ) data_by_trial = { trial_index: OrderedDict(sorted(data_by_timestamp.items())) for trial_index, data_by_timestamp in data_by_trial.items() } experiment._trials = {trial.index: trial for trial in trials} experiment._arms_by_name = {} for trial in trials: if trial.ttl_seconds is not None: experiment._trials_have_ttl = True for arm in trial.arms: experiment._register_arm(arm) if experiment.status_quo is not None: sq = none_throws(experiment.status_quo) experiment._register_arm(sq) experiment._time_created = experiment_sqa.time_created experiment._experiment_type = self.get_enum_name( value=experiment_sqa.experiment_type, enum=self.config.experiment_type_enum ) experiment._data_by_trial = dict(data_by_trial) experiment.db_id = experiment_sqa.id return experiment
[docs] def parameter_from_sqa(self, parameter_sqa: SQAParameter) -> Parameter: """Convert SQLAlchemy Parameter to Ax Parameter.""" if parameter_sqa.domain_type == DomainType.RANGE: if parameter_sqa.lower is None or parameter_sqa.upper is None: raise SQADecodeError( "`lower` and `upper` must be set for RangeParameter; one or both " f"not found on parameter {parameter_sqa.name}." ) if parameter_sqa.dependents is not None: raise SQADecodeError( "`dependents` unexpectedly non-null on range parameter " f"{parameter_sqa.name}." ) parameter = RangeParameter( name=parameter_sqa.name, parameter_type=parameter_sqa.parameter_type, lower=float(none_throws(parameter_sqa.lower)), upper=float(none_throws(parameter_sqa.upper)), log_scale=parameter_sqa.log_scale or False, digits=parameter_sqa.digits, is_fidelity=parameter_sqa.is_fidelity or False, target_value=parameter_sqa.target_value, ) elif parameter_sqa.domain_type == DomainType.CHOICE: target_value = parameter_sqa.target_value if parameter_sqa.choice_values is None: raise SQADecodeError( "`values` must be set for ChoiceParameter; not found on" f" parameter {parameter_sqa.name}." ) if bool(parameter_sqa.is_task) and target_value is None: target_value = none_throws(parameter_sqa.choice_values)[0] logger.debug( f"Target value is null for parameter {parameter_sqa.name}. " f"Defaulting to first choice {target_value}." ) parameter = ChoiceParameter( name=parameter_sqa.name, parameter_type=parameter_sqa.parameter_type, values=none_throws(parameter_sqa.choice_values), is_fidelity=parameter_sqa.is_fidelity or False, target_value=target_value, is_ordered=parameter_sqa.is_ordered, is_task=bool(parameter_sqa.is_task), dependents=parameter_sqa.dependents, ) elif parameter_sqa.domain_type == DomainType.FIXED: # Don't throw an error if parameter_sqa.fixed_value is None; # that might be the actual value! parameter = FixedParameter( name=parameter_sqa.name, parameter_type=parameter_sqa.parameter_type, value=parameter_sqa.fixed_value, is_fidelity=parameter_sqa.is_fidelity or False, target_value=parameter_sqa.target_value, dependents=parameter_sqa.dependents, ) else: raise SQADecodeError( f"Cannot decode SQAParameter because {parameter_sqa.domain_type} " "is an invalid domain type." ) parameter.db_id = parameter_sqa.id return parameter
[docs] def parameter_constraint_from_sqa( self, parameter_constraint_sqa: SQAParameterConstraint, parameters: list[Parameter], ) -> ParameterConstraint: """Convert SQLAlchemy ParameterConstraint to Ax ParameterConstraint.""" parameter_map = {p.name: p for p in parameters} if parameter_constraint_sqa.type == ParameterConstraintType.ORDER: lower_name = None upper_name = None for k, v in parameter_constraint_sqa.constraint_dict.items(): if v == 1: lower_name = k elif v == -1: upper_name = k if not lower_name or not upper_name: raise SQADecodeError( "Cannot decode SQAParameterConstraint because `lower_name` or " "`upper_name` was not found." ) lower_parameter = parameter_map[lower_name] upper_parameter = parameter_map[upper_name] constraint = OrderConstraint( lower_parameter=lower_parameter, upper_parameter=upper_parameter ) elif parameter_constraint_sqa.type == ParameterConstraintType.SUM: # This operation is potentially very inefficient. # It is O(#constrained_parameters * #total_parameters) parameter_names = list(parameter_constraint_sqa.constraint_dict.keys()) constraint_parameters = [ next( search_space_param for search_space_param in parameters if search_space_param.name == c_p_name ) for c_p_name in parameter_names ] a_values = list(parameter_constraint_sqa.constraint_dict.values()) if len(a_values) == 0: raise SQADecodeError( "Cannot decode SQAParameterConstraint because `constraint_dict` " "is empty." ) a = a_values[0] is_upper_bound = a == 1 bound = float(parameter_constraint_sqa.bound) * a constraint = SumConstraint( parameters=constraint_parameters, is_upper_bound=is_upper_bound, bound=bound, ) else: constraint = ParameterConstraint( constraint_dict=dict(parameter_constraint_sqa.constraint_dict), bound=float(parameter_constraint_sqa.bound), ) constraint.db_id = parameter_constraint_sqa.id return constraint
[docs] def parameter_distributions_from_sqa( self, parameter_constraint_sqa_list: list[SQAParameterConstraint], ) -> tuple[list[ParameterDistribution], int | None]: """Convert SQLAlchemy ParameterConstraints to Ax ParameterDistributions.""" parameter_distributions: list[ParameterDistribution] = [] num_samples = None for parameter_constraint_sqa in parameter_constraint_sqa_list: if parameter_constraint_sqa.type != ParameterConstraintType.DISTRIBUTION: raise SQADecodeError( "Parameter distribution must have type `DISTRIBUTION`. " "Received type " f"{ParameterConstraintType(parameter_constraint_sqa.type).name}." ) num_samples = int(parameter_constraint_sqa.bound) distribution = object_from_json( parameter_constraint_sqa.constraint_dict, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) distribution.db_id = parameter_constraint_sqa.id parameter_distributions.append(distribution) return parameter_distributions, num_samples
[docs] def environmental_variable_from_sqa(self, parameter_sqa: SQAParameter) -> Parameter: """Convert SQLAlchemy Parameter to Ax environmental variable.""" if parameter_sqa.domain_type == DomainType.ENVIRONMENTAL_RANGE: if parameter_sqa.lower is None or parameter_sqa.upper is None: raise SQADecodeError( "`lower` and `upper` must be set for RangeParameter." ) parameter = RangeParameter( name=parameter_sqa.name, parameter_type=parameter_sqa.parameter_type, lower=float(none_throws(parameter_sqa.lower)), upper=float(none_throws(parameter_sqa.upper)), log_scale=parameter_sqa.log_scale or False, digits=parameter_sqa.digits, is_fidelity=parameter_sqa.is_fidelity or False, target_value=parameter_sqa.target_value, ) else: raise SQADecodeError( f"Cannot decode SQAParameter because {parameter_sqa.domain_type} " "is an invalid domain type." ) parameter.db_id = parameter_sqa.id return parameter
[docs] def search_space_from_sqa( self, parameters_sqa: list[SQAParameter], parameter_constraints_sqa: list[SQAParameterConstraint], ) -> SearchSpace | None: """Convert a list of SQLAlchemy Parameters and ParameterConstraints to an Ax SearchSpace. """ parameters, environmental_variables = [], [] for parameter_sqa in parameters_sqa: if parameter_sqa.domain_type == DomainType.ENVIRONMENTAL_RANGE: environmental_variables.append( self.environmental_variable_from_sqa(parameter_sqa=parameter_sqa) ) else: parameters.append(self.parameter_from_sqa(parameter_sqa=parameter_sqa)) parameter_constraints = [ self.parameter_constraint_from_sqa( parameter_constraint_sqa=parameter_constraint_sqa, parameters=parameters ) for parameter_constraint_sqa in parameter_constraints_sqa if parameter_constraint_sqa.type != ParameterConstraintType.DISTRIBUTION ] parameter_distributions, num_samples = self.parameter_distributions_from_sqa( [ parameter_constraint_sqa for parameter_constraint_sqa in parameter_constraints_sqa if parameter_constraint_sqa.type == ParameterConstraintType.DISTRIBUTION ] ) if len(parameters) == 0: return None if num_samples is not None: return RobustSearchSpace( parameters=parameters, parameter_distributions=parameter_distributions, num_samples=num_samples, environmental_variables=environmental_variables, parameter_constraints=parameter_constraints, ) elif any(p.is_hierarchical for p in parameters): return HierarchicalSearchSpace( parameters=parameters, parameter_constraints=parameter_constraints ) else: return SearchSpace( parameters=parameters, parameter_constraints=parameter_constraints )
[docs] def metric_from_sqa( self, metric_sqa: SQAMetric ) -> Metric | Objective | OutcomeConstraint | RiskMeasure: """Convert SQLAlchemy Metric to Ax Metric, Objective, or OutcomeConstraint.""" metric = self._metric_from_sqa_util(metric_sqa) if metric_sqa.intent == MetricIntent.TRACKING: return metric elif metric_sqa.intent == MetricIntent.OBJECTIVE: return self._objective_from_sqa(metric=metric, metric_sqa=metric_sqa) elif ( metric_sqa.intent == MetricIntent.MULTI_OBJECTIVE ): # metric_sqa is a parent whose children are individual # metrics in MultiObjective return self._multi_objective_from_sqa(parent_metric_sqa=metric_sqa) elif ( metric_sqa.intent == MetricIntent.SCALARIZED_OBJECTIVE ): # metric_sqa is a parent whose children are individual # metrics in Scalarized Objective return self._scalarized_objective_from_sqa(parent_metric_sqa=metric_sqa) elif metric_sqa.intent == MetricIntent.OUTCOME_CONSTRAINT: return self._outcome_constraint_from_sqa( metric=metric, metric_sqa=metric_sqa ) elif metric_sqa.intent == MetricIntent.SCALARIZED_OUTCOME_CONSTRAINT: return self._scalarized_outcome_constraint_from_sqa( metric=metric, metric_sqa=metric_sqa ) elif metric_sqa.intent == MetricIntent.OBJECTIVE_THRESHOLD: return self._objective_threshold_from_sqa( metric=metric, metric_sqa=metric_sqa ) elif metric_sqa.intent == MetricIntent.RISK_MEASURE: return self._risk_measure_from_sqa(metric=metric, metric_sqa=metric_sqa) else: raise SQADecodeError( f"Cannot decode SQAMetric because {metric_sqa.intent} " f"is an invalid intent." )
[docs] def opt_config_and_tracking_metrics_from_sqa( self, metrics_sqa: list[SQAMetric] ) -> tuple[OptimizationConfig | None, list[Metric]]: """Convert a list of SQLAlchemy Metrics to a a tuple of Ax OptimizationConfig and tracking metrics. """ objective = None objective_thresholds = [] outcome_constraints = [] tracking_metrics = [] risk_measure = None for metric_sqa in metrics_sqa: metric = self.metric_from_sqa(metric_sqa=metric_sqa) if isinstance(metric, Objective): objective = metric elif isinstance(metric, ObjectiveThreshold): objective_thresholds.append(metric) elif isinstance(metric, OutcomeConstraint): outcome_constraints.append(metric) elif isinstance(metric, RiskMeasure): risk_measure = metric else: tracking_metrics.append(metric) if objective is None: return None, tracking_metrics if objective_thresholds or type(objective) is MultiObjective: optimization_config = MultiObjectiveOptimizationConfig( objective=assert_is_instance( objective, Union[MultiObjective, ScalarizedObjective] ), outcome_constraints=outcome_constraints, objective_thresholds=objective_thresholds, risk_measure=risk_measure, ) else: optimization_config = OptimizationConfig( objective=objective, outcome_constraints=outcome_constraints, risk_measure=risk_measure, ) return (optimization_config, tracking_metrics)
[docs] def arm_from_sqa(self, arm_sqa: SQAArm) -> Arm: """Convert SQLAlchemy Arm to Ax Arm.""" arm = Arm(parameters=arm_sqa.parameters, name=arm_sqa.name) arm.db_id = arm_sqa.id return arm
[docs] def abandoned_arm_from_sqa( self, abandoned_arm_sqa: SQAAbandonedArm ) -> AbandonedArm: """Convert SQLAlchemy AbandonedArm to Ax AbandonedArm.""" arm = AbandonedArm( name=abandoned_arm_sqa.name, reason=abandoned_arm_sqa.abandoned_reason, time=abandoned_arm_sqa.time_abandoned, ) arm.db_id = abandoned_arm_sqa.id return arm
[docs] def generator_run_from_sqa( self, generator_run_sqa: SQAGeneratorRun, reduced_state: bool, immutable_search_space_and_opt_config: bool, ) -> GeneratorRun: """Convert SQLAlchemy GeneratorRun to Ax GeneratorRun. Args: generator_run_sqa: `SQAGeneratorRun` to decode. reduced_state: Whether to load generator runs with a slightly reduced state (without model state, search space, and optimization config). immutable_search_space_and_opt_config: Whether to load generator runs without search space and optimization config. Unlike `reduced_state`, we do still load model state. """ arms = [] weights = [] opt_config = None search_space = None for arm_sqa in generator_run_sqa.arms: arms.append(self.arm_from_sqa(arm_sqa=arm_sqa)) weights.append(arm_sqa.weight) if not reduced_state and not immutable_search_space_and_opt_config: ( opt_config, tracking_metrics, ) = self.opt_config_and_tracking_metrics_from_sqa( metrics_sqa=generator_run_sqa.metrics ) if len(tracking_metrics) > 0: raise SQADecodeError("GeneratorRun should not have tracking metrics.") search_space = self.search_space_from_sqa( parameters_sqa=generator_run_sqa.parameters, parameter_constraints_sqa=generator_run_sqa.parameter_constraints, ) best_arm_predictions = None model_predictions = None if ( generator_run_sqa.best_arm_parameters is not None and generator_run_sqa.best_arm_predictions is not None ): best_arm = Arm( name=generator_run_sqa.best_arm_name, parameters=none_throws(generator_run_sqa.best_arm_parameters), ) best_arm_predictions = ( best_arm, tuple(none_throws(generator_run_sqa.best_arm_predictions)), ) model_predictions = ( tuple(none_throws(generator_run_sqa.model_predictions)) if generator_run_sqa.model_predictions is not None else None ) generator_run = GeneratorRun( arms=arms, weights=weights, optimization_config=opt_config, search_space=search_space, fit_time=( None if generator_run_sqa.fit_time is None else float(generator_run_sqa.fit_time) ), gen_time=( None if generator_run_sqa.gen_time is None else float(generator_run_sqa.gen_time) ), best_arm_predictions=best_arm_predictions, # pyre-ignore[6] # pyre-fixme[6]: Expected `Optional[Tuple[typing.Dict[str, List[float]], # typing.Dict[str, typing.Dict[str, List[float]]]]]` for 8th param but got # `Optional[typing.Tuple[Union[typing.Dict[str, List[float]], # typing.Dict[str, typing.Dict[str, List[float]]]], ...]]`. model_predictions=model_predictions, model_key=generator_run_sqa.model_key, model_kwargs=( None if reduced_state else object_from_json( generator_run_sqa.model_kwargs, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) ), bridge_kwargs=( None if reduced_state else object_from_json( generator_run_sqa.bridge_kwargs, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) ), gen_metadata=( None if reduced_state else object_from_json( generator_run_sqa.gen_metadata, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) ), model_state_after_gen=( None if reduced_state else object_from_json( generator_run_sqa.model_state_after_gen, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) ), generation_step_index=generator_run_sqa.generation_step_index, candidate_metadata_by_arm_signature=object_from_json( generator_run_sqa.candidate_metadata_by_arm_signature, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ), generation_node_name=generator_run_sqa.generation_node_name, ) generator_run._time_created = generator_run_sqa.time_created generator_run._generator_run_type = self.get_enum_name( value=generator_run_sqa.generator_run_type, enum=self.config.generator_run_type_enum, ) generator_run._index = generator_run_sqa.index generator_run.db_id = generator_run_sqa.id return generator_run
[docs] def generation_strategy_from_sqa( self, gs_sqa: SQAGenerationStrategy, experiment: Experiment | None = None, reduced_state: bool = False, ) -> GenerationStrategy: """Convert SQALchemy generation strategy to Ax `GenerationStrategy`.""" steps = object_from_json( gs_sqa.steps, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) nodes = object_from_json( gs_sqa.nodes, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) # GenerationStrategies can ony be initialized with either steps or nodes. # Determine which to use to initialize this GenerationStrategy. if len(steps) > 0: gs = GenerationStrategy(name=gs_sqa.name, steps=steps) if gs_sqa.curr_index is None: raise SQADecodeError( "Current index must be specified for " "step-based Generation Strategies." ) gs._curr = gs._steps[gs_sqa.curr_index] else: gs = GenerationStrategy(name=gs_sqa.name, nodes=nodes) curr_node_name = gs_sqa.curr_node_name for node in gs._nodes: if node.node_name == curr_node_name: gs._curr = node break immutable_ss_and_oc = ( experiment.immutable_search_space_and_opt_config if experiment is not None else False ) gs._generator_runs = [ self.generator_run_from_sqa( generator_run_sqa=gr, reduced_state=reduced_state, immutable_search_space_and_opt_config=immutable_ss_and_oc, ) for gr in gs_sqa.generator_runs[:-1] ] # This check is necessary to prevent an index error # on `gs_sqa.generator_runs[-1]` if gs_sqa.generator_runs: # Only fully load the last of the generator runs, load the rest with # reduced state. This is necessary for stateful models. The only # stateful models available in open source ax is currently SOBOL. try: gs._generator_runs.append( self.generator_run_from_sqa( generator_run_sqa=gs_sqa.generator_runs[-1], reduced_state=False, immutable_search_space_and_opt_config=immutable_ss_and_oc, ) ) except JSONDecodeError: if not reduced_state: raise logger.exception( "Failed to decode the last generator run because of the following " "error. Loading with reduced state:" ) # If the last generator run is not fully loadable, load it with # reduced state. gs._generator_runs.append( self.generator_run_from_sqa( generator_run_sqa=gs_sqa.generator_runs[-1], reduced_state=True, immutable_search_space_and_opt_config=immutable_ss_and_oc, ) ) gs._experiment = experiment if len(gs._generator_runs) > 0: # Generation strategy had an initialized model. if experiment is None: raise SQADecodeError( "Cannot decode a generation strategy with a non-zero number of " "generator runs without an experiment." ) gs.db_id = gs_sqa.id return gs
[docs] def runner_from_sqa(self, runner_sqa: SQARunner) -> Runner: """Convert SQLAlchemy Runner to Ax Runner.""" if runner_sqa.runner_type not in self.config.reverse_runner_registry: raise SQADecodeError( f"Cannot decode SQARunner because {runner_sqa.runner_type} " f"is an invalid type. " ) runner_class = self.config.reverse_runner_registry[runner_sqa.runner_type] args = runner_class.deserialize_init_args( args=dict(runner_sqa.properties or {}), decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) # pyre-ignore[45]: Cannot instantiate abstract class `Runner`. runner = runner_class(**args) runner.db_id = runner_sqa.id return runner
[docs] def trial_from_sqa( self, trial_sqa: SQATrial, experiment: Experiment, reduced_state: bool = False, ) -> BaseTrial: """Convert SQLAlchemy Trial to Ax Trial. Args: trial_sqa: `SQATrial` to decode. reduced_state: Whether to load trial's generator run(s) with a slightly reduced state (without model state, search space, and optimization config). """ immutable_ss_and_oc = experiment.immutable_search_space_and_opt_config if trial_sqa.is_batch: trial = BatchTrial( experiment=experiment, optimize_for_power=trial_sqa.optimize_for_power, ttl_seconds=trial_sqa.ttl_seconds, index=trial_sqa.index, lifecycle_stage=trial_sqa.lifecycle_stage, ) generator_run_structs = [ GeneratorRunStruct( generator_run=self.generator_run_from_sqa( generator_run_sqa=generator_run_sqa, reduced_state=reduced_state, immutable_search_space_and_opt_config=immutable_ss_and_oc, ), weight=float(generator_run_sqa.weight or 1.0), ) for generator_run_sqa in trial_sqa.generator_runs ] if trial_sqa.status_quo_name is not None: new_generator_run_structs = [] for struct in generator_run_structs: if ( struct.generator_run.generator_run_type == GeneratorRunType.STATUS_QUO.name ): status_quo_weight = struct.generator_run.weights[0] trial._status_quo = struct.generator_run.arms[0] trial._status_quo_weight_override = status_quo_weight trial._status_quo_generator_run_db_id = ( struct.generator_run.db_id ) trial._status_quo_arm_db_id = struct.generator_run.arms[0].db_id else: new_generator_run_structs.append(struct) generator_run_structs = new_generator_run_structs trial._generator_run_structs = generator_run_structs if not reduced_state: trial._abandoned_arms_metadata = { abandoned_arm_sqa.name: self.abandoned_arm_from_sqa( abandoned_arm_sqa=abandoned_arm_sqa ) for abandoned_arm_sqa in trial_sqa.abandoned_arms } trial._refresh_arms_by_name() # Trigger cache build else: trial = Trial( experiment=experiment, ttl_seconds=trial_sqa.ttl_seconds, index=trial_sqa.index, ) if trial_sqa.generator_runs: if len(trial_sqa.generator_runs) != 1: raise SQADecodeError( "Cannot decode SQATrial to Trial because trial is not batched " "but has more than one generator run." ) trial._generator_run = self.generator_run_from_sqa( generator_run_sqa=trial_sqa.generator_runs[0], reduced_state=reduced_state, immutable_search_space_and_opt_config=immutable_ss_and_oc, ) trial._trial_type = trial_sqa.trial_type # Swap `DISPATCHED` for `RUNNING`, since `DISPATCHED` is deprecated and nearly # equivalent to `RUNNING`. trial._status = ( trial_sqa.status if trial_sqa.status != TrialStatus.DISPATCHED else TrialStatus.RUNNING ) trial._time_created = trial_sqa.time_created trial._time_completed = trial_sqa.time_completed trial._time_staged = trial_sqa.time_staged trial._time_run_started = trial_sqa.time_run_started trial._abandoned_reason = trial_sqa.abandoned_reason trial._failed_reason = trial_sqa.failed_reason # pyre-fixme[9]: _run_metadata has type `Dict[str, Any]`; used as # `Optional[Dict[str, Any]]`. # pyre-fixme[8]: Attribute has type `Dict[str, typing.Any]`; used as # `Optional[typing.Dict[Variable[_KT], Variable[_VT]]]`. trial._run_metadata = ( dict(trial_sqa.run_metadata) if trial_sqa.run_metadata is not None else None ) # pyre-fixme[9]: _run_metadata has type `Dict[str, Any]`; used as # `Optional[Dict[str, Any]]`. # pyre-fixme[8]: Attribute has type `Dict[str, typing.Any]`; used as # `Optional[typing.Dict[Variable[_KT], Variable[_VT]]]`. trial._stop_metadata = ( dict(trial_sqa.stop_metadata) if trial_sqa.stop_metadata is not None else None ) trial._num_arms_created = trial_sqa.num_arms_created trial._runner = ( self.runner_from_sqa( trial_sqa.runner, ) if trial_sqa.runner else None ) trial._generation_step_index = trial_sqa.generation_step_index trial._properties = dict(trial_sqa.properties or {}) trial.db_id = trial_sqa.id return trial
[docs] def data_from_sqa( self, data_sqa: SQAData, data_constructor: type[Data] = Data, ) -> Data: """Convert SQLAlchemy Data to AE Data.""" # TODO: extract data type from SQAData after DataRegistry added. kwargs = data_constructor.deserialize_init_args( args=dict( json.loads(data_sqa.structure_metadata_json) if data_sqa.structure_metadata_json else {} ) ) # Override df from deserialize_init_args with `data_json`. # NOTE: Need dtype=False, otherwise infers arm_names like # "4_1" should be int 41. kwargs["df"] = pd.read_json(StringIO(data_sqa.data_json), dtype=False) dat = data_constructor(**kwargs) dat.db_id = data_sqa.id return dat
[docs] def analysis_card_from_sqa( self, analysis_card_sqa: SQAAnalysisCard, ) -> AnalysisCard: """Convert SQLAlchemy Analysis to Ax Analysis Object.""" card = AnalysisCard( name=analysis_card_sqa.name, title=analysis_card_sqa.title, subtitle=analysis_card_sqa.subtitle, level=analysis_card_sqa.level, df=read_json(analysis_card_sqa.dataframe_json), blob=analysis_card_sqa.blob, attributes=( {} if analysis_card_sqa.attributes == "" else json.loads(analysis_card_sqa.attributes) ), ) card.db_id = analysis_card_sqa.id return card
def _metric_from_sqa_util(self, metric_sqa: SQAMetric) -> Metric: """Convert SQLAlchemy Metric to Ax Metric""" if metric_sqa.metric_type not in self.config.reverse_metric_registry: raise SQADecodeError( f"Cannot decode SQAMetric because {metric_sqa.metric_type} " f"is an invalid type. " ) metric_class = self.config.reverse_metric_registry[metric_sqa.metric_type] args = dict( object_from_json( metric_sqa.properties, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) or {} ) args["name"] = metric_sqa.name args["lower_is_better"] = metric_sqa.lower_is_better args = metric_class.deserialize_init_args(args=args) metric = metric_class(**args) metric.db_id = metric_sqa.id return metric def _objective_from_sqa(self, metric: Metric, metric_sqa: SQAMetric) -> Objective: if metric_sqa.minimize is None: raise SQADecodeError( "Cannot decode SQAMetric to Objective because minimize is None." ) if metric_sqa.scalarized_objective_weight is not None: raise SQADecodeError( f"The metric {metric.name} corresponding to regular objective does not " "have weight attribute" ) # Resolve any conflicts between ``lower_is_better`` and ``minimize``. minimize = metric_sqa.minimize if metric.lower_is_better is not None and metric.lower_is_better != minimize: logger.warning( f"Metric {metric.name} has {metric.lower_is_better=} but objective " f"specifies {minimize=}. Overwriting ``lower_is_better`` to match " f"the optimization direction {minimize=}." ) metric.lower_is_better = minimize return Objective(metric=metric, minimize=minimize) def _multi_objective_from_sqa(self, parent_metric_sqa: SQAMetric) -> Objective: try: metrics_sqa_children = ( parent_metric_sqa.scalarized_objective_children_metrics ) except DetachedInstanceError: metrics_sqa_children = _get_scalarized_objective_children_metrics( metric_id=parent_metric_sqa.id, decoder=self ) if metrics_sqa_children is None: raise SQADecodeError( "Cannot decode SQAMetric to MultiObjective \ because the parent metric has no children metrics." ) if parent_metric_sqa.properties and parent_metric_sqa.properties.get( "skip_runners_and_metrics" ): for child_metric in metrics_sqa_children: child_metric.metric_type = self.config.metric_registry[Metric] # Extracting metric and weight for each child objectives = [ self._objective_from_sqa( metric=self._metric_from_sqa_util(parent_metric_sqa), metric_sqa=parent_metric_sqa, ) for parent_metric_sqa in metrics_sqa_children ] multi_objective = MultiObjective(objectives=objectives) multi_objective.db_id = parent_metric_sqa.id return multi_objective def _scalarized_objective_from_sqa(self, parent_metric_sqa: SQAMetric) -> Objective: if parent_metric_sqa.minimize is None: raise SQADecodeError( "Cannot decode SQAMetric to Scalarized Objective " "because minimize is None." ) try: metrics_sqa_children = ( parent_metric_sqa.scalarized_objective_children_metrics ) except DetachedInstanceError: metrics_sqa_children = _get_scalarized_objective_children_metrics( metric_id=parent_metric_sqa.id, decoder=self ) if metrics_sqa_children is None: raise SQADecodeError( "Cannot decode SQAMetric to Scalarized Objective \ because the parent metric has no children metrics." ) # Extracting metric and weight for each child metrics, weights = zip( *[ ( self._metric_from_sqa_util(child), child.scalarized_objective_weight, ) for child in metrics_sqa_children ] ) scalarized_objective = ScalarizedObjective( metrics=list(metrics), weights=list(weights), minimize=none_throws(parent_metric_sqa.minimize), ) scalarized_objective.db_id = parent_metric_sqa.id return scalarized_objective def _outcome_constraint_from_sqa( self, metric: Metric, metric_sqa: SQAMetric ) -> OutcomeConstraint: if ( metric_sqa.bound is None or metric_sqa.op is None or metric_sqa.relative is None ): raise SQADecodeError( "Cannot decode SQAMetric to OutcomeConstraint because " "bound, op, or relative is None." ) return OutcomeConstraint( metric=metric, bound=float(none_throws(metric_sqa.bound)), op=none_throws(metric_sqa.op), relative=none_throws(metric_sqa.relative), ) def _scalarized_outcome_constraint_from_sqa( self, metric: Metric, metric_sqa: SQAMetric ) -> ScalarizedOutcomeConstraint: if ( metric_sqa.bound is None or metric_sqa.op is None or metric_sqa.relative is None ): raise SQADecodeError( "Cannot decode SQAMetric to Scalarized OutcomeConstraint because " "bound, op, or relative is None." ) try: metrics_sqa_children = ( metric_sqa.scalarized_outcome_constraint_children_metrics ) except DetachedInstanceError: metrics_sqa_children = _get_scalarized_outcome_constraint_children_metrics( metric_id=metric_sqa.id, decoder=self ) if metrics_sqa_children is None: raise SQADecodeError( "Cannot decode SQAMetric to Scalarized OutcomeConstraint \ because the parent metric has no children metrics." ) # Extracting metric and weight for each child metrics, weights = zip( *[ ( self._metric_from_sqa_util(child), child.scalarized_outcome_constraint_weight, ) for child in metrics_sqa_children ] ) scalarized_outcome_constraint = ScalarizedOutcomeConstraint( metrics=list(metrics), weights=list(weights), bound=float(none_throws(metric_sqa.bound)), op=none_throws(metric_sqa.op), relative=none_throws(metric_sqa.relative), ) scalarized_outcome_constraint.db_id = metric_sqa.id return scalarized_outcome_constraint def _objective_threshold_from_sqa( self, metric: Metric, metric_sqa: SQAMetric ) -> ObjectiveThreshold: if metric_sqa.bound is None or metric_sqa.relative is None: raise SQADecodeError( "Cannot decode SQAMetric to ObjectiveThreshold because " "bound, op, or relative is None." ) ot = ObjectiveThreshold( metric=metric, bound=float(none_throws(metric_sqa.bound)), relative=none_throws(metric_sqa.relative), op=metric_sqa.op, ) # ObjectiveThreshold constructor clones the passed-in metric, which means # the db id gets lost and so we need to reset it ot.metric._db_id = metric.db_id return ot def _risk_measure_from_sqa( self, metric: Metric, metric_sqa: SQAMetric ) -> RiskMeasure: rm = RiskMeasure( **object_from_json( metric_sqa.properties, decoder_registry=self.config.json_decoder_registry, class_decoder_registry=self.config.json_class_decoder_registry, ) ) rm._db_id = metric.db_id return rm
def _get_scalarized_objective_children_metrics( metric_id: int, decoder: Decoder ) -> list[SQAMetric]: """Given a metric db id, fetch its scalarized objective children metrics.""" metric_sqa_class = cast( type[SQAMetric], decoder.config.class_to_sqa_class[Metric], ) with session_scope() as session: query = session.query(metric_sqa_class).filter_by( scalarized_objective_id=metric_id ) metrics_sqa = query.all() return metrics_sqa def _get_scalarized_outcome_constraint_children_metrics( metric_id: int, decoder: Decoder ) -> list[SQAMetric]: """Given a metric db id, fetch its scalarized outcome constraint children metrics.""" metric_sqa_class = cast( type[SQAMetric], decoder.config.class_to_sqa_class[Metric], ) with session_scope() as session: query = session.query(metric_sqa_class).filter_by( scalarized_outcome_constraint_id=metric_id ) metrics_sqa = query.all() return metrics_sqa