Source code for ax.storage.json_store.encoders

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

import warnings
from pathlib import Path
from typing import Any

from ax.core import Experiment, ObservationFeatures
from ax.core.arm import Arm
from ax.core.auxiliary import AuxiliaryExperiment
from ax.core.batch_trial import BatchTrial
from ax.core.data import Data
from ax.core.generator_run import GeneratorRun
from ax.core.map_data import MapData, MapKeyInfo
from ax.core.metric import Metric
from ax.core.multi_type_experiment import MultiTypeExperiment
from ax.core.objective import MultiObjective, Objective, ScalarizedObjective
from ax.core.optimization_config import (
    MultiObjectiveOptimizationConfig,
    OptimizationConfig,
)
from ax.core.outcome_constraint import OutcomeConstraint
from ax.core.parameter import ChoiceParameter, FixedParameter, RangeParameter
from ax.core.parameter_constraint import (
    OrderConstraint,
    ParameterConstraint,
    SumConstraint,
)
from ax.core.parameter_distribution import ParameterDistribution
from ax.core.risk_measures import RiskMeasure
from ax.core.runner import Runner
from ax.core.search_space import RobustSearchSpace, SearchSpace
from ax.core.trial import Trial
from ax.early_stopping.strategies import (
    LogicalEarlyStoppingStrategy,
    PercentileEarlyStoppingStrategy,
    ThresholdEarlyStoppingStrategy,
)
from ax.exceptions.core import AxStorageWarning
from ax.exceptions.storage import JSONEncodeError, STORAGE_DOCS_SUFFIX
from ax.global_stopping.strategies.improvement import ImprovementGlobalStoppingStrategy
from ax.modelbridge.best_model_selector import BestModelSelector
from ax.modelbridge.generation_node import GenerationNode
from ax.modelbridge.generation_strategy import GenerationStep, GenerationStrategy
from ax.modelbridge.model_spec import FactoryFunctionModelSpec, ModelSpec
from ax.modelbridge.registry import _encode_callables_as_references
from ax.modelbridge.transforms.base import Transform
from ax.modelbridge.transition_criterion import TransitionCriterion
from ax.models.torch.botorch_modular.model import BoTorchModel
from ax.models.torch.botorch_modular.surrogate import Surrogate
from ax.models.winsorization_config import WinsorizationConfig
from ax.storage.botorch_modular_registry import CLASS_TO_REGISTRY
from ax.storage.transform_registry import TRANSFORM_REGISTRY
from ax.utils.common.serialization import serialize_init_args
from ax.utils.common.typeutils_torch import torch_type_to_str
from ax.utils.testing.backend_simulator import (
    BackendSimulator,
    BackendSimulatorOptions,
    SimTrial,
)
from botorch.models.transforms.input import ChainedInputTransform, InputTransform
from botorch.sampling.base import MCSampler
from botorch.utils.types import _DefaultType
from torch import Tensor


[docs] def experiment_to_dict(experiment: Experiment) -> dict[str, Any]: """Convert Ax experiment to a dictionary.""" return { "__type": experiment.__class__.__name__, "name": experiment._name, "description": experiment.description, "experiment_type": experiment.experiment_type, "search_space": experiment.search_space, "optimization_config": experiment.optimization_config, "tracking_metrics": list(experiment._tracking_metrics.values()), "runner": experiment.runner, "status_quo": experiment.status_quo, "time_created": experiment.time_created, "trials": experiment.trials, "is_test": experiment.is_test, "data_by_trial": experiment.data_by_trial, "properties": experiment._properties, "default_data_type": experiment._default_data_type, }
[docs] def multi_type_experiment_to_dict(experiment: MultiTypeExperiment) -> dict[str, Any]: """Convert AE multitype experiment to a dictionary.""" multi_type_dict = { "default_trial_type": experiment._default_trial_type, "_metric_to_canonical_name": experiment._metric_to_canonical_name, "_metric_to_trial_type": experiment._metric_to_trial_type, "_trial_type_to_runner": experiment._trial_type_to_runner, } multi_type_dict.update(experiment_to_dict(experiment)) return multi_type_dict
[docs] def batch_to_dict(batch: BatchTrial) -> dict[str, Any]: """Convert Ax batch to a dictionary.""" return { "__type": batch.__class__.__name__, "index": batch.index, "trial_type": batch.trial_type, "ttl_seconds": batch.ttl_seconds, "status": batch.status, "status_quo": batch.status_quo, "status_quo_weight_override": batch._status_quo_weight_override, "time_created": batch.time_created, "time_completed": batch.time_completed, "time_staged": batch.time_staged, "time_run_started": batch.time_run_started, "abandoned_reason": batch.abandoned_reason, "failed_reason": batch.failed_reason, "run_metadata": batch.run_metadata, "stop_metadata": batch.stop_metadata, "generator_run_structs": batch.generator_run_structs, "runner": batch.runner, "abandoned_arms_metadata": batch._abandoned_arms_metadata, "num_arms_created": batch._num_arms_created, "optimize_for_power": batch.optimize_for_power, "generation_step_index": batch._generation_step_index, "lifecycle_stage": batch.lifecycle_stage, "properties": batch._properties, }
[docs] def trial_to_dict(trial: Trial) -> dict[str, Any]: """Convert Ax trial to a dictionary.""" return { "__type": trial.__class__.__name__, "index": trial.index, "trial_type": trial.trial_type, "ttl_seconds": trial.ttl_seconds, "status": trial.status, "time_created": trial.time_created, "time_completed": trial.time_completed, "time_staged": trial.time_staged, "time_run_started": trial.time_run_started, "abandoned_reason": trial.abandoned_reason, "failed_reason": trial.failed_reason, "run_metadata": trial.run_metadata, "stop_metadata": trial.stop_metadata, "generator_run": trial.generator_run, "runner": trial.runner, "num_arms_created": trial._num_arms_created, "generation_step_index": trial._generation_step_index, "properties": trial._properties, }
[docs] def range_parameter_to_dict(parameter: RangeParameter) -> dict[str, Any]: """Convert Ax range parameter to a dictionary.""" return { "__type": parameter.__class__.__name__, "name": parameter.name, "parameter_type": parameter.parameter_type, "lower": parameter.lower, "upper": parameter.upper, "log_scale": parameter.log_scale, "logit_scale": parameter.logit_scale, "digits": parameter.digits, "is_fidelity": parameter.is_fidelity, "target_value": parameter.target_value, }
[docs] def choice_parameter_to_dict(parameter: ChoiceParameter) -> dict[str, Any]: """Convert Ax choice parameter to a dictionary.""" return { "__type": parameter.__class__.__name__, "is_ordered": parameter.is_ordered, "is_task": parameter.is_task, "name": parameter.name, "parameter_type": parameter.parameter_type, "values": parameter.values, "is_fidelity": parameter.is_fidelity, "target_value": parameter.target_value, "dependents": parameter.dependents if parameter.is_hierarchical else None, }
[docs] def fixed_parameter_to_dict(parameter: FixedParameter) -> dict[str, Any]: """Convert Ax fixed parameter to a dictionary.""" return { "__type": parameter.__class__.__name__, "name": parameter.name, "parameter_type": parameter.parameter_type, "value": parameter.value, "is_fidelity": parameter.is_fidelity, "target_value": parameter.target_value, "dependents": parameter.dependents if parameter.is_hierarchical else None, }
[docs] def order_parameter_constraint_to_dict( parameter_constraint: OrderConstraint, ) -> dict[str, Any]: """Convert Ax order parameter constraint to a dictionary.""" return { "__type": parameter_constraint.__class__.__name__, "lower_name": parameter_constraint.lower_parameter.name, "upper_name": parameter_constraint.upper_parameter.name, }
[docs] def sum_parameter_constraint_to_dict( parameter_constraint: SumConstraint, ) -> dict[str, Any]: """Convert Ax sum parameter constraint to a dictionary.""" return { "__type": parameter_constraint.__class__.__name__, "parameter_names": parameter_constraint._parameter_names, "is_upper_bound": parameter_constraint._is_upper_bound, # SumParameterConstraint constructor takes in absolute value of # the bound and transforms it based on the is_upper_bound value "bound": abs(parameter_constraint._bound), }
[docs] def parameter_constraint_to_dict( parameter_constraint: ParameterConstraint, ) -> dict[str, Any]: """Convert Ax sum parameter constraint to a dictionary.""" return { "__type": parameter_constraint.__class__.__name__, "constraint_dict": parameter_constraint.constraint_dict, "bound": parameter_constraint.bound, }
[docs] def arm_to_dict(arm: Arm) -> dict[str, Any]: """Convert Ax arm to a dictionary.""" return { "__type": arm.__class__.__name__, "parameters": arm.parameters, "name": arm._name, }
[docs] def search_space_to_dict(search_space: SearchSpace) -> dict[str, Any]: """Convert Ax search space to a dictionary.""" return { "__type": search_space.__class__.__name__, "parameters": list(search_space.parameters.values()), "parameter_constraints": search_space.parameter_constraints, }
[docs] def robust_search_space_to_dict(rss: RobustSearchSpace) -> dict[str, Any]: """Convert robust search space to a dictionary.""" return { "__type": rss.__class__.__name__, "parameters": list(rss._parameters.values()), "parameter_distributions": rss.parameter_distributions, "num_samples": rss.num_samples, "environmental_variables": list(rss._environmental_variables.values()), "parameter_constraints": rss.parameter_constraints, }
[docs] def parameter_distribution_to_dict(dist: ParameterDistribution) -> dict[str, Any]: """Convert a parameter distribution to a dictionary.""" return { "__type": dist.__class__.__name__, "parameters": dist.parameters, "distribution_class": dist.distribution_class, "distribution_parameters": dist.distribution_parameters, "multiplicative": dist.multiplicative, }
[docs] def metric_to_dict(metric: Metric) -> dict[str, Any]: """Convert Ax metric to a dictionary.""" properties = metric.serialize_init_args(obj=metric) properties["__type"] = metric.__class__.__name__ return properties
[docs] def objective_to_dict(objective: Objective) -> dict[str, Any]: """Convert Ax objective to a dictionary.""" return { "__type": objective.__class__.__name__, "metric": objective.metric, "minimize": objective.minimize, }
[docs] def multi_objective_to_dict(objective: MultiObjective) -> dict[str, Any]: """Convert Ax objective to a dictionary.""" return { "__type": objective.__class__.__name__, "objectives": objective.objectives, "weights": objective.weights, }
[docs] def scalarized_objective_to_dict(objective: ScalarizedObjective) -> dict[str, Any]: """Convert Ax objective to a dictionary.""" return { "__type": objective.__class__.__name__, "metrics": objective.metrics, "weights": objective.weights, "minimize": objective.minimize, }
[docs] def outcome_constraint_to_dict(outcome_constraint: OutcomeConstraint) -> dict[str, Any]: """Convert Ax outcome constraint to a dictionary.""" return { "__type": outcome_constraint.__class__.__name__, "metric": outcome_constraint.metric, "op": outcome_constraint.op, "bound": outcome_constraint.bound, "relative": outcome_constraint.relative, }
[docs] def optimization_config_to_dict( optimization_config: OptimizationConfig, ) -> dict[str, Any]: """Convert Ax optimization config to a dictionary.""" return { "__type": optimization_config.__class__.__name__, "objective": optimization_config.objective, "outcome_constraints": optimization_config.outcome_constraints, "risk_measure": optimization_config.risk_measure, }
[docs] def multi_objective_optimization_config_to_dict( multi_objective_optimization_config: MultiObjectiveOptimizationConfig, ) -> dict[str, Any]: """Convert Ax optimization config to a dictionary.""" return { "__type": multi_objective_optimization_config.__class__.__name__, "objective": multi_objective_optimization_config.objective, "outcome_constraints": multi_objective_optimization_config.outcome_constraints, "objective_thresholds": multi_objective_optimization_config.objective_thresholds, # noqa E501 "risk_measure": multi_objective_optimization_config.risk_measure, }
[docs] def generator_run_to_dict(generator_run: GeneratorRun) -> dict[str, Any]: """Convert Ax generator run to a dictionary.""" gr = generator_run cand_metadata = gr.candidate_metadata_by_arm_signature return { "__type": gr.__class__.__name__, "arms": gr.arms, "weights": gr.weights, "optimization_config": gr.optimization_config, "search_space": gr.search_space, "time_created": gr.time_created, "model_predictions": gr.model_predictions, "best_arm_predictions": gr.best_arm_predictions, "generator_run_type": gr.generator_run_type, "index": gr.index, "fit_time": gr.fit_time, "gen_time": gr.gen_time, "model_key": gr._model_key, "model_kwargs": gr._model_kwargs, "bridge_kwargs": gr._bridge_kwargs, "gen_metadata": gr._gen_metadata, "model_state_after_gen": gr._model_state_after_gen, "generation_step_index": gr._generation_step_index, "candidate_metadata_by_arm_signature": cand_metadata, "generation_node_name": gr._generation_node_name, }
[docs] def runner_to_dict(runner: Runner) -> dict[str, Any]: """Convert Ax runner to a dictionary.""" properties = runner.serialize_init_args(obj=runner) properties["__type"] = runner.__class__.__name__ return properties
[docs] def data_to_dict(data: Data) -> dict[str, Any]: """Convert Ax data to a dictionary.""" properties = data.serialize_init_args(obj=data) properties["__type"] = data.__class__.__name__ return properties
[docs] def map_data_to_dict(map_data: MapData) -> dict[str, Any]: """Convert Ax map data to a dictionary.""" properties = map_data.serialize_init_args(obj=map_data) properties["__type"] = map_data.__class__.__name__ return properties
# pyre-fixme[24]: Generic type `MapKeyInfo` expects 1 type parameter.
[docs] def map_key_info_to_dict(mki: MapKeyInfo) -> dict[str, Any]: """Convert Ax map data metadata to a dictionary.""" properties = serialize_init_args(obj=mki) properties["__type"] = mki.__class__.__name__ return properties
[docs] def transform_type_to_dict(transform_type: type[Transform]) -> dict[str, Any]: """Convert a transform class to a dictionary.""" return { "__type": "Type[Transform]", "index_in_registry": TRANSFORM_REGISTRY[transform_type], "transform_type": f"{transform_type}", }
[docs] def generation_step_to_dict(generation_step: GenerationStep) -> dict[str, Any]: """Converts Ax generation step to a dictionary.""" return { "__type": generation_step.__class__.__name__, "model": generation_step.model, "num_trials": generation_step.num_trials, "min_trials_observed": generation_step.min_trials_observed, "completion_criteria": generation_step.completion_criteria, "max_parallelism": generation_step.max_parallelism, "use_update": generation_step.use_update, "enforce_num_trials": generation_step.enforce_num_trials, "model_kwargs": _encode_callables_as_references( generation_step.model_kwargs or {} ), "model_gen_kwargs": _encode_callables_as_references( generation_step.model_gen_kwargs or {} ), "index": generation_step.index, "should_deduplicate": generation_step.should_deduplicate, "transition_criteria": generation_step.transition_criteria, }
[docs] def generation_node_to_dict(generation_node: GenerationNode) -> dict[str, Any]: """Convert Ax generation node to a dictionary.""" return { "__type": generation_node.__class__.__name__, "node_name": generation_node.node_name, "model_specs": generation_node.model_specs, "best_model_selector": generation_node.best_model_selector, "should_deduplicate": generation_node.should_deduplicate, "transition_criteria": generation_node.transition_criteria, "model_spec_to_gen_from": generation_node._model_spec_to_gen_from, "previous_node_name": generation_node._previous_node_name, "trial_type": generation_node._trial_type, # need to manually encode input constructors because the key is an enum. # Our encoding and decoding logic in object_to_json and object_from_json # doesn't recursively encode/decode the keys of dictionaries. "input_constructors": { key.name: value for key, value in generation_node.input_constructors.items() }, }
[docs] def generation_strategy_to_dict( generation_strategy: GenerationStrategy, ) -> dict[str, Any]: """Converts Ax generation strategy to a dictionary.""" if generation_strategy.uses_non_registered_models: raise ValueError( "Generation strategies that use custom models provided through " "callables cannot be serialized and stored." ) node_based_gs = generation_strategy.is_node_based return { "__type": generation_strategy.__class__.__name__, "db_id": generation_strategy._db_id, "name": generation_strategy.name, "steps": generation_strategy._steps if not node_based_gs else [], "curr_index": ( generation_strategy.current_step_index if not node_based_gs else -1 ), "generator_runs": generation_strategy._generator_runs, "had_initialized_model": generation_strategy.model is not None, "experiment": generation_strategy._experiment, "nodes": generation_strategy._nodes, "curr_node_name": generation_strategy.current_node_name, }
[docs] def transition_criterion_to_dict(criterion: TransitionCriterion) -> dict[str, Any]: """Convert Ax TransitionCriterion to a dictionary.""" properties = criterion.serialize_init_args(obj=criterion) properties["__type"] = criterion.__class__.__name__ return properties
[docs] def model_spec_to_dict(model_spec: ModelSpec) -> dict[str, Any]: """Convert Ax model spec to a dictionary.""" if isinstance(model_spec, FactoryFunctionModelSpec): raise NotImplementedError( f"JSON serialization not yet implemented for model spec: {model_spec}" " because it leverages a factory function instead of `Models` registry." ) return { "__type": model_spec.__class__.__name__, "model_enum": model_spec.model_enum, "model_kwargs": model_spec.model_kwargs, "model_gen_kwargs": model_spec.model_gen_kwargs, }
[docs] def best_model_selector_to_dict( best_model_selector: BestModelSelector, ) -> dict[str, Any]: """Convert ``BestModelSelector`` to a dictionary.""" return { "__type": best_model_selector.__class__.__name__, **serialize_init_args(obj=best_model_selector), }
[docs] def observation_features_to_dict(obs_features: ObservationFeatures) -> dict[str, Any]: """Converts Ax observation features to a dictionary""" return { "__type": obs_features.__class__.__name__, "parameters": obs_features.parameters, "trial_index": obs_features.trial_index, "start_time": obs_features.start_time, "end_time": obs_features.end_time, "random_split": obs_features.random_split, "metadata": obs_features.metadata, }
[docs] def botorch_model_to_dict(model: BoTorchModel) -> dict[str, Any]: """Convert Ax model to a dictionary.""" return { "__type": model.__class__.__name__, "acquisition_class": model.acquisition_class, "acquisition_options": model.acquisition_options or {}, "surrogate": (model._surrogate if model.surrogate_spec is None else None), "surrogate_spec": model.surrogate_spec, "botorch_acqf_class": model._botorch_acqf_class, "refit_on_cv": model.refit_on_cv, "warm_start_refit": model.warm_start_refit, }
[docs] def surrogate_to_dict(surrogate: Surrogate) -> dict[str, Any]: """Convert Ax surrogate to a dictionary.""" dict_representation = {"__type": surrogate.__class__.__name__} dict_representation.update(surrogate._serialize_attributes_as_kwargs()) return dict_representation
[docs] def tensor_to_dict(obj: Tensor) -> dict[str, Any]: if obj.numel() > 1e4: warnings.warn( f"Attempting to serialize a tensor with {obj.numel()} elements. " "This may result in storage issues.", AxStorageWarning, stacklevel=3, ) return { "__type": "Tensor", "value": obj.tolist(), "dtype": {"__type": "torch_dtype", "value": torch_type_to_str(obj.dtype)}, "device": {"__type": "torch_device", "value": torch_type_to_str(obj.device)}, }
# pyre-fixme[2]: Parameter annotation cannot contain `Any`.
[docs] def botorch_modular_to_dict(class_type: type[Any]) -> dict[str, Any]: """Convert any class to a dictionary.""" for _class in CLASS_TO_REGISTRY: if issubclass(class_type, _class): registry = CLASS_TO_REGISTRY[_class] if class_type not in registry: raise ValueError( f"Class `{class_type.__name__}` not in Type[{_class.__name__}] " "registry, please add it. BoTorch object registries are " "located in `ax/storage/botorch_modular_registry.py`. " f"{STORAGE_DOCS_SUFFIX}" ) return { "__type": f"Type[{_class.__name__}]", "index": registry[class_type], "class": f"{_class}", } raise ValueError( f"{class_type} does not have a corresponding parent class in " f"CLASS_TO_REGISTRY. {STORAGE_DOCS_SUFFIX}" )
# pyre-fixme[2]: Parameter annotation cannot contain `Any`.
[docs] def botorch_component_to_dict(input_obj: Any) -> dict[str, Any]: class_type = input_obj.__class__ if isinstance(input_obj, InputTransform): # Input transforms cannot be initialized with their state dicts. # We will instead extract the init args. state_dict = botorch_input_transform_to_init_args(input_transform=input_obj) else: state_dict = dict(input_obj.state_dict()) if isinstance(input_obj, MCSampler): # The sampler args are not part of the state dict. Manually add them. # Sample shape cannot be added to torch state dict since it is not a tensor. state_dict["sample_shape"] = input_obj.sample_shape state_dict["seed"] = input_obj.seed return { "__type": f"{class_type.__name__}", "index": class_type, "class": f"{class_type}", "state_dict": state_dict, }
[docs] def botorch_input_transform_to_init_args( input_transform: InputTransform, ) -> dict[str, Any]: """Extract the init kwargs from an input transform.""" if isinstance(input_transform, ChainedInputTransform): return {k: botorch_component_to_dict(v) for k, v in input_transform.items()} else: try: # pyre-fixme[29]: `Union[Tensor, Module]` is not a function. return input_transform.get_init_args() # pyre-fixme [16] except AttributeError: raise JSONEncodeError( f"{input_transform.__class__.__name__} does not define `get_init_args` " "method. Please implement it to enable storage." )
[docs] def percentile_early_stopping_strategy_to_dict( strategy: PercentileEarlyStoppingStrategy, ) -> dict[str, Any]: """Convert Ax percentile early stopping strategy to a dictionary.""" return { "__type": strategy.__class__.__name__, "metric_names": strategy.metric_names, "percentile_threshold": strategy.percentile_threshold, "min_progression": strategy.min_progression, "min_curves": strategy.min_curves, "trial_indices_to_ignore": strategy.trial_indices_to_ignore, "seconds_between_polls": strategy.seconds_between_polls, "normalize_progressions": strategy.normalize_progressions, }
[docs] def threshold_early_stopping_strategy_to_dict( strategy: ThresholdEarlyStoppingStrategy, ) -> dict[str, Any]: """Convert Ax metric-threshold early stopping strategy to a dictionary.""" return { "__type": strategy.__class__.__name__, "metric_names": strategy.metric_names, "metric_threshold": strategy.metric_threshold, "min_progression": strategy.min_progression, "trial_indices_to_ignore": strategy.trial_indices_to_ignore, "normalize_progressions": strategy.normalize_progressions, }
[docs] def logical_early_stopping_strategy_to_dict( strategy: LogicalEarlyStoppingStrategy, ) -> dict[str, Any]: return { "__type": strategy.__class__.__name__, "left": strategy.left, "right": strategy.right, }
[docs] def improvement_global_stopping_strategy_to_dict( gss: ImprovementGlobalStoppingStrategy, ) -> dict[str, Any]: """Convert ImprovementGlobalStoppingStrategy to a dictionary.""" return { "__type": gss.__class__.__name__, "min_trials": gss.min_trials, "window_size": gss.window_size, "improvement_bar": gss.improvement_bar, "inactive_when_pending_trials": gss.inactive_when_pending_trials, }
[docs] def winsorization_config_to_dict(config: WinsorizationConfig) -> dict[str, Any]: """Convert Ax winsorization config to a dictionary.""" return { "__type": config.__class__.__name__, "lower_quantile_margin": config.lower_quantile_margin, "upper_quantile_margin": config.upper_quantile_margin, "lower_boundary": config.lower_boundary, "upper_boundary": config.upper_boundary, }
[docs] def risk_measure_to_dict( risk_measure: RiskMeasure, ) -> dict[str, Any]: """Convert a RiskMeasure to a dictionary.""" return { "__type": risk_measure.__class__.__name__, "risk_measure": risk_measure.risk_measure, "options": risk_measure.options, }
[docs] def auxiliary_experiment_to_dict( auxiliary_experiment: AuxiliaryExperiment, ) -> dict[str, Any]: return { "__type": auxiliary_experiment.__class__.__name__, "experiment": auxiliary_experiment.experiment, "data": auxiliary_experiment.data, }
[docs] def pathlib_to_dict(path: Path) -> dict[str, Any]: return {"__type": path.__class__.__name__, "pathsegments": [str(path)]}
[docs] def default_to_dict(default: _DefaultType) -> dict[str, Any]: return {"__type": default.__class__.__name__}
[docs] def backend_simulator_to_dict( backend_simulator: BackendSimulator, ) -> dict[str, str | BackendSimulatorOptions | list[SimTrial] | bool]: return { "__type": backend_simulator.__class__.__name__, "options": backend_simulator.options, "queued": backend_simulator._queued, "running": backend_simulator._running, "failed": backend_simulator._failed, "completed": backend_simulator._completed, "verbose_logging": backend_simulator._verbose_logging, }