Source code for ax.modelbridge.torch

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

from __future__ import annotations

from collections import defaultdict
from copy import deepcopy
from logging import Logger
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type, Union

import numpy as np
import torch
from ax.core.arm import Arm
from ax.core.data import Data
from ax.core.experiment import Experiment
from ax.core.generator_run import extract_arm_predictions
from ax.core.metric import Metric
from ax.core.observation import (
    Observation,
    ObservationData,
    ObservationFeatures,
    separate_observations,
)
from ax.core.optimization_config import (
    MultiObjectiveOptimizationConfig,
    OptimizationConfig,
)
from ax.core.outcome_constraint import (
    ComparisonOp,
    ObjectiveThreshold,
    ScalarizedOutcomeConstraint,
)
from ax.core.search_space import SearchSpace
from ax.core.types import TCandidateMetadata, TModelPredictArm
from ax.exceptions.core import DataRequiredError, UnsupportedError
from ax.modelbridge.base import gen_arms, GenResults, ModelBridge
from ax.modelbridge.modelbridge_utils import (
    array_to_observation_data,
    extract_objective_thresholds,
    extract_objective_weights,
    extract_outcome_constraints,
    extract_parameter_constraints,
    extract_risk_measure,
    extract_search_space_digest,
    get_fixed_features,
    observation_data_to_array,
    observation_features_to_array,
    parse_observation_features,
    pending_observations_as_array_list,
    process_contextual_datasets,
    SearchSpaceDigest,
    transform_callback,
    validate_and_apply_final_transform,
)
from ax.modelbridge.transforms.base import Transform
from ax.modelbridge.transforms.cast import Cast
from ax.models.torch.botorch_modular.model import BoTorchModel
from ax.models.torch.botorch_moo import MultiObjectiveBotorchModel
from ax.models.torch.botorch_moo_defaults import infer_objective_thresholds
from ax.models.torch_base import TorchModel, TorchOptConfig
from ax.models.types import TConfig
from ax.utils.common.logger import get_logger
from ax.utils.common.typeutils import not_none
from botorch.utils.datasets import MultiTaskDataset, SupervisedDataset
from torch import Tensor

logger: Logger = get_logger(__name__)

FIT_MODEL_ERROR = "Model must be fit before {action}."


# pyre-fixme [13]: Attributes are never initialized.
[docs]class TorchModelBridge(ModelBridge): """A model bridge for using torch-based models. Specifies an interface that is implemented by TorchModel. In particular, model should have methods fit, predict, and gen. See TorchModel for the API for each of these methods. Requires that all parameters have been transformed to RangeParameters or FixedParameters with float type and no log scale. This class converts Ax parameter types to torch tensors before passing them to the model. """ model: Optional[TorchModel] = None outcomes: List[str] parameters: List[str] _default_model_gen_options: TConfig _last_observations: Optional[List[Observation]] = None def __init__( self, experiment: Experiment, search_space: SearchSpace, data: Data, model: TorchModel, transforms: List[Type[Transform]], transform_configs: Optional[Dict[str, TConfig]] = None, torch_dtype: Optional[torch.dtype] = None, torch_device: Optional[torch.device] = None, status_quo_name: Optional[str] = None, status_quo_features: Optional[ObservationFeatures] = None, optimization_config: Optional[OptimizationConfig] = None, fit_out_of_design: bool = False, fit_abandoned: bool = False, fit_tracking_metrics: bool = True, fit_on_init: bool = True, default_model_gen_options: Optional[TConfig] = None, ) -> None: self.dtype: torch.dtype = torch.double if torch_dtype is None else torch_dtype self.device = torch_device # pyre-ignore [4]: Attribute `_default_model_gen_options` of class # `TorchModelBridge` must have a type that does not contain `Any`. self._default_model_gen_options = default_model_gen_options or {} # Handle init for multi-objective optimization. self.is_moo_problem: bool = False if optimization_config or (experiment and experiment.optimization_config): optimization_config = not_none( optimization_config or experiment.optimization_config ) self.is_moo_problem = optimization_config.is_moo_problem super().__init__( experiment=experiment, search_space=search_space, data=data, model=model, transforms=transforms, transform_configs=transform_configs, status_quo_name=status_quo_name, status_quo_features=status_quo_features, optimization_config=optimization_config, fit_out_of_design=fit_out_of_design, fit_abandoned=fit_abandoned, fit_tracking_metrics=fit_tracking_metrics, fit_on_init=fit_on_init, )
[docs] def feature_importances(self, metric_name: str) -> Dict[str, float]: importances_tensor = not_none(self.model).feature_importances() importances_dict = dict(zip(self.outcomes, importances_tensor)) importances_arr = importances_dict[metric_name].flatten() return dict(zip(self.parameters, importances_arr))
[docs] def infer_objective_thresholds( self, search_space: Optional[SearchSpace] = None, optimization_config: Optional[OptimizationConfig] = None, fixed_features: Optional[ObservationFeatures] = None, ) -> List[ObjectiveThreshold]: """Infer objective thresholds. This method is only applicable for Multi-Objective optimization problems. This method uses the model-estimated Pareto frontier over the in-sample points to infer absolute (not relativized) objective thresholds. This uses a heuristic that sets the objective threshold to be a scaled nadir point, where the nadir point is scaled back based on the range of each objective across the current in-sample Pareto frontier. """ if not self.is_moo_problem: raise UnsupportedError( "Objective thresholds are only supported for multi-objective " "optimization." ) search_space = (search_space or self._model_space).clone() base_gen_args = self._get_transformed_gen_args( search_space=search_space, optimization_config=optimization_config, fixed_features=fixed_features, ) # Get transformed args from TorchModelbridge. search_space_digest, torch_opt_config = self._get_transformed_model_gen_args( search_space=base_gen_args.search_space, fixed_features=base_gen_args.fixed_features, pending_observations={}, optimization_config=base_gen_args.optimization_config, ) if torch_opt_config.risk_measure is not None: raise UnsupportedError( "`infer_objective_thresholds` does not support risk measures." ) # Infer objective thresholds. if isinstance(self.model, MultiObjectiveBotorchModel): model = self.model.model Xs = self.model.Xs elif isinstance(self.model, BoTorchModel): model = self.model.surrogate.model Xs = self.model.surrogate.Xs else: raise UnsupportedError( "Model must be a MultiObjectiveBotorchModel or an appropriate Modular " "Botorch Model to infer_objective_thresholds. Found " f"{type(self.model)}." ) obj_thresholds = infer_objective_thresholds( model=not_none(model), objective_weights=torch_opt_config.objective_weights, bounds=search_space_digest.bounds, outcome_constraints=torch_opt_config.outcome_constraints, linear_constraints=torch_opt_config.linear_constraints, fixed_features=torch_opt_config.fixed_features, Xs=Xs, ) return self._untransform_objective_thresholds( objective_thresholds=obj_thresholds, objective_weights=torch_opt_config.objective_weights, bounds=search_space_digest.bounds, # we should never be in a situation where we call this without there # being an optimization config involved. opt_config_metrics=not_none(torch_opt_config.opt_config_metrics), fixed_features=torch_opt_config.fixed_features, )
[docs] def model_best_point( self, search_space: Optional[SearchSpace] = None, optimization_config: Optional[OptimizationConfig] = None, pending_observations: Optional[Dict[str, List[ObservationFeatures]]] = None, fixed_features: Optional[ObservationFeatures] = None, model_gen_options: Optional[TConfig] = None, ) -> Optional[Tuple[Arm, Optional[TModelPredictArm]]]: # Get modifiable versions if search_space is None: search_space = self._model_space search_space = search_space.clone() base_gen_args = self._get_transformed_gen_args( search_space=search_space, optimization_config=optimization_config, pending_observations=pending_observations, fixed_features=fixed_features, ) search_space_digest, torch_opt_config = self._get_transformed_model_gen_args( search_space=base_gen_args.search_space, pending_observations=base_gen_args.pending_observations, fixed_features=base_gen_args.fixed_features, model_gen_options=None, optimization_config=base_gen_args.optimization_config, ) try: xbest = not_none(self.model).best_point( search_space_digest=search_space_digest, torch_opt_config=torch_opt_config, ) except NotImplementedError: xbest = None if xbest is None: return None best_obsf = ObservationFeatures( parameters={p: float(xbest[i]) for i, p in enumerate(self.parameters)} ) for t in reversed(list(self.transforms.values())): best_obsf = t.untransform_observation_features([best_obsf])[0] best_point_predictions = extract_arm_predictions( model_predictions=self.predict([best_obsf]), arm_idx=0 ) best_arms, _ = gen_arms( observation_features=[best_obsf], arms_by_signature=self._arms_by_signature, ) best_arm = best_arms[0] return best_arm, best_point_predictions
def _array_callable_to_tensor_callable( self, array_func: Callable[[np.ndarray], np.ndarray] ) -> Callable[[Tensor], Tensor]: tensor_func: Callable[[Tensor], Tensor] = lambda x: ( self._array_to_tensor(array_func(x.detach().cpu().clone().numpy())) ) return tensor_func def _array_list_to_tensors(self, arrays: List[np.ndarray]) -> List[Tensor]: return [self._array_to_tensor(x) for x in arrays] def _array_to_tensor(self, array: Union[np.ndarray, List[float]]) -> Tensor: return torch.as_tensor(array, dtype=self.dtype, device=self.device) def _convert_observations( self, observation_data: List[ObservationData], observation_features: List[ObservationFeatures], outcomes: List[str], parameters: List[str], search_space_digest: Optional[SearchSpaceDigest], ) -> Tuple[ List[SupervisedDataset], List[str], Optional[List[List[TCandidateMetadata]]] ]: """Converts observations to a dictionary of `Dataset` containers and (optional) candidate metadata. Args: observation_data: A list of `ObservationData` from which to extract mean `Y` and variance `Yvar` observations. Must correspond 1:1 to the `observation_features`. observation_features: A list of `ObservationFeatures` from which to extract parameter values. Must correspond 1:1 to the `observation_data`. outcomes: The names of the outcomes to extract observations for. parameters: The names of the parameters to extract. Any observation features that are not included in `parameters` will be ignored. search_space_digest: An optional `SearchSpaceDigest` containing information about the search space. This is used to convert datasets into a `MultiTaskDataset` where applicable. Returns: - A list of `Dataset` objects. The datsets will be for the set of outcomes specified in `outcomes`, not necessarily in that order. Some outcomes will be grouped into a single dataset if there are contextual datasets. - A list of outcomes in the order that they appear in the datasets, accounting for reordering made necessary by contextual datasets. - An optional list of lists of candidate metadata. Each inner list corresponds to one outcome. Each element in the inner list corresponds to one observation. """ ( Xs, Ys, Yvars, candidate_metadata_dict, any_candidate_metadata_is_not_none, ) = self._extract_observation_data( observation_data, observation_features, parameters ) datasets: List[SupervisedDataset] = [] candidate_metadata = [] for outcome in outcomes: if outcome not in Xs: raise ValueError(f"Outcome `{outcome}` was not observed.") X = torch.stack(Xs[outcome], dim=0) Y = torch.tensor( Ys[outcome], dtype=self.dtype, device=self.device ).unsqueeze(-1) Yvar = torch.tensor( Yvars[outcome], dtype=self.dtype, device=self.device ).unsqueeze(-1) if Yvar.isnan().all(): Yvar = None else: Yvar = Yvar.clamp_min(1e-6) dataset = SupervisedDataset( X=X, Y=Y, Yvar=Yvar, feature_names=parameters, outcome_names=[outcome], ) datasets.append(dataset) candidate_metadata.append(candidate_metadata_dict[outcome]) # If the search space digest specifies a task feature, # convert the datasets into MultiTaskDataset. if search_space_digest is not None and ( task_features := search_space_digest.task_features ): if len(task_features) > 1: raise UnsupportedError("Multiple task features are not supported.") target_task_value = search_space_digest.target_values[task_features[0]] # Both the MTGP and the MTDataset expect integer valued task features. # Check that they're indeed integers. task_choices = search_space_digest.discrete_choices[task_features[0]] if any(int(t) != t for t in task_choices): raise ValueError( "The values of the task feature must be integers. " "This is often accomplished using a " "TaskChoiceToIntTaskChoice transform. " "Check that the model is using the correct set of transforms. " f"Got {task_choices=}." ) datasets = [ MultiTaskDataset.from_joint_dataset( dataset=dataset, task_feature_index=task_features[0], target_task_value=int(target_task_value), ) for dataset in datasets ] # Check if there is a `parameter_decomposition` experiment property to # decide whether it is a contextual experiment. if self._experiment_properties.get("parameter_decomposition", None) is not None: # Convert to a list of ContextualDateset for contextual experiments. # pyre-ignore [9]: ContextualDataset is a subclass of SupervisedDataset. datasets = process_contextual_datasets( datasets=datasets, outcomes=outcomes, parameter_decomposition=self._experiment_properties[ "parameter_decomposition" ], metric_decomposition=self._experiment_properties.get( "metric_decomposition", None ), ) # Get the order of outcomes ordered_outcomes = [] for d in datasets: ordered_outcomes.extend(d.outcome_names) # Re-order candidate metadata if any_candidate_metadata_is_not_none: ordered_metadata = [] for outcome in ordered_outcomes: ordered_metadata.append(candidate_metadata[outcomes.index(outcome)]) else: ordered_metadata = None return datasets, ordered_outcomes, ordered_metadata def _cross_validate( self, search_space: SearchSpace, cv_training_data: List[Observation], cv_test_points: List[ObservationFeatures], parameters: Optional[List[str]] = None, use_posterior_predictive: bool = False, **kwargs: Any, ) -> List[ObservationData]: """Make predictions at cv_test_points using only the data in obs_feats and obs_data. """ if self.model is None: raise ValueError(FIT_MODEL_ERROR.format(action="_cross_validate")) datasets, candidate_metadata, search_space_digest = self._get_fit_args( search_space=search_space, observations=cv_training_data, parameters=parameters, update_outcomes_and_parameters=False, ) if parameters is None: parameters = self.parameters X_test = torch.tensor( [[obsf.parameters[p] for p in parameters] for obsf in cv_test_points], dtype=self.dtype, device=self.device, ) # Use the model to do the cross validation f_test, cov_test = not_none(self.model).cross_validate( datasets=datasets, X_test=torch.as_tensor(X_test, dtype=self.dtype, device=self.device), search_space_digest=search_space_digest, use_posterior_predictive=use_posterior_predictive, **kwargs, ) # Convert array back to ObservationData return array_to_observation_data( f=f_test.detach().cpu().clone().numpy(), cov=cov_test.detach().cpu().clone().numpy(), outcomes=self.outcomes, )
[docs] def evaluate_acquisition_function( self, observation_features: Union[ List[ObservationFeatures], List[List[ObservationFeatures]] ], search_space: Optional[SearchSpace] = None, optimization_config: Optional[OptimizationConfig] = None, pending_observations: Optional[Dict[str, List[ObservationFeatures]]] = None, fixed_features: Optional[ObservationFeatures] = None, acq_options: Optional[Dict[str, Any]] = None, ) -> List[float]: """Evaluate the acquisition function for given set of observation features. Args: observation_features: Either a list or a list of lists of observation features, representing parameterizations, for which to evaluate the acquisition function. If a single list is passed, the acquisition function is evaluated for each observation feature. If a list of lists is passed each element (itself a list of observation features) represents a batch of points for which to evaluate the joint acquisition value. search_space: Search space for fitting the model. optimization_config: Optimization config defining how to optimize the model. pending_observations: A map from metric name to pending observations for that metric. fixed_features: An ObservationFeatures object containing any features that should be fixed at specified values during generation. acq_options: Keyword arguments used to contruct the acquisition function. Returns: A list of acquisition function values, in the same order as the input observation features. """ search_space = search_space or self._model_space optimization_config = optimization_config or self._optimization_config if optimization_config is None: raise ValueError( "The `optimization_config` must be specified either while initializing " "the ModelBridge or to the `evaluate_acquisition_function` call." ) # pyre-ignore Incompatible parameter type [9] obs_feats: List[List[ObservationFeatures]] = deepcopy(observation_features) if not isinstance(obs_feats[0], list): obs_feats = [[obs] for obs in obs_feats] for t in self.transforms.values(): for i, batch in enumerate(obs_feats): obs_feats[i] = t.transform_observation_features(batch) base_gen_args = self._get_transformed_gen_args( search_space=search_space, optimization_config=optimization_config, pending_observations=pending_observations, fixed_features=fixed_features, ) return self._evaluate_acquisition_function( observation_features=obs_feats, search_space=base_gen_args.search_space, optimization_config=not_none(base_gen_args.optimization_config), pending_observations=base_gen_args.pending_observations, fixed_features=base_gen_args.fixed_features, acq_options=acq_options, )
def _evaluate_acquisition_function( self, observation_features: List[List[ObservationFeatures]], search_space: SearchSpace, optimization_config: OptimizationConfig, pending_observations: Optional[Dict[str, List[ObservationFeatures]]] = None, fixed_features: Optional[ObservationFeatures] = None, acq_options: Optional[Dict[str, Any]] = None, ) -> List[float]: if self.model is None: raise RuntimeError( FIT_MODEL_ERROR.format(action="_evaluate_acquisition_function") ) search_space_digest, torch_opt_config = self._get_transformed_model_gen_args( search_space=search_space, pending_observations=pending_observations or {}, fixed_features=fixed_features or ObservationFeatures({}), optimization_config=optimization_config, ) X = np.array( [ observation_features_to_array(self.parameters, obsf) for obsf in observation_features ] ) evals = not_none(self.model).evaluate_acquisition_function( X=self._array_to_tensor(X), search_space_digest=search_space_digest, torch_opt_config=torch_opt_config, acq_options=acq_options, ) return evals.tolist() def _get_fit_args( self, search_space: SearchSpace, observations: List[Observation], parameters: Optional[List[str]], update_outcomes_and_parameters: bool, ) -> Tuple[ List[SupervisedDataset], Optional[List[List[TCandidateMetadata]]], SearchSpaceDigest, ]: """Helper for consolidating some common argument processing between fit and cross validate methods. Extracts datasets and candidate metadate from observations and the search space digest from the search space. Args: search_space: A transformed search space for fitting the model. observations: The observations to fit the model with. These should also be transformed. parameters: Names of parameters to be used in the model. Defaults to all parameters in the search space. update_outcomes_and_parameters: Whether to update `self.outcomes` with all outcomes found in the observations and `self.parameters` with all parameters in the search space. Typically only used in `_fit`. Returns: The datasets & metadata extracted from the observations and the search space digest. """ self._last_observations = observations if update_outcomes_and_parameters: self.parameters = list(search_space.parameters.keys()) if parameters is None: parameters = self.parameters all_metric_names: Set[str] = set() observation_features, observation_data = separate_observations(observations) # Only update outcomes if fitting a model on tracking metrics. Otherwise, # we will only fit models to the outcomes that are extracted from optimization # config in ModelBridge.__init__. if update_outcomes_and_parameters and self._fit_tracking_metrics: for od in observation_data: all_metric_names.update(od.metric_names) self.outcomes = sorted(all_metric_names) # Deterministic order # Get all relevant information on the parameters search_space_digest = extract_search_space_digest( search_space=search_space, param_names=self.parameters ) # Convert observations to datasets datasets, ordered_outcomes, candidate_metadata = self._convert_observations( observation_data=observation_data, observation_features=observation_features, outcomes=self.outcomes, parameters=parameters, search_space_digest=search_space_digest, ) if update_outcomes_and_parameters: self.outcomes = ordered_outcomes else: assert ( ordered_outcomes == self.outcomes ), f"Unexpected ordering of outcomes: {ordered_outcomes} != {self.outcomes}" return datasets, candidate_metadata, search_space_digest def _fit( self, model: TorchModel, search_space: SearchSpace, observations: List[Observation], parameters: Optional[List[str]] = None, **kwargs: Any, ) -> None: if self.model is not None and observations == self._last_observations: logger.debug( "The observations are identical to the last set of observations " "used to fit the model. Skipping model fitting." ) return datasets, candidate_metadata, search_space_digest = self._get_fit_args( search_space=search_space, observations=observations, parameters=parameters, update_outcomes_and_parameters=True, ) # Fit self.model = model self.model.fit( datasets=datasets, search_space_digest=search_space_digest, candidate_metadata=candidate_metadata, **kwargs, ) def _gen( self, n: int, search_space: SearchSpace, pending_observations: Dict[str, List[ObservationFeatures]], fixed_features: Optional[ObservationFeatures], model_gen_options: Optional[TConfig] = None, optimization_config: Optional[OptimizationConfig] = None, ) -> GenResults: """Generate new candidates according to search_space and optimization_config. The outcome constraints should be transformed to no longer be relative. """ if self.model is None: raise ValueError(FIT_MODEL_ERROR.format(action="_gen")) augmented_model_gen_options = { **self._default_model_gen_options, **(model_gen_options or {}), } search_space_digest, torch_opt_config = self._get_transformed_model_gen_args( search_space=search_space, pending_observations=pending_observations, fixed_features=fixed_features, model_gen_options=augmented_model_gen_options, optimization_config=optimization_config, ) # Generate the candidates gen_results = not_none(self.model).gen( n=n, search_space_digest=search_space_digest, torch_opt_config=torch_opt_config, ) gen_metadata = gen_results.gen_metadata if ( isinstance(optimization_config, MultiObjectiveOptimizationConfig) and gen_metadata.get("objective_thresholds", None) is not None ): # If objective_thresholds are supplied by the user, then the transformed # user-specified objective thresholds are in gen_metadata. Otherwise, # if using a hypervolume based acquisition function, then # the inferred objective thresholds are in gen_metadata. opt_config_metrics = ( torch_opt_config.opt_config_metrics or not_none(self._optimization_config).metrics ) gen_metadata["objective_thresholds"] = ( self._untransform_objective_thresholds( objective_thresholds=gen_metadata["objective_thresholds"], objective_weights=torch_opt_config.objective_weights, bounds=search_space_digest.bounds, opt_config_metrics=opt_config_metrics, fixed_features=torch_opt_config.fixed_features, ) ) # Transform array to observations observation_features = self._array_to_observation_features( X=gen_results.points.detach().cpu().clone().numpy(), candidate_metadata=gen_results.candidate_metadata, ) try: xbest = not_none(self.model).best_point( search_space_digest=search_space_digest, torch_opt_config=torch_opt_config, ) except NotImplementedError: xbest = None best_obsf = None if xbest is not None: best_obsf = ObservationFeatures( parameters={p: float(xbest[i]) for i, p in enumerate(self.parameters)} ) return GenResults( observation_features=observation_features, weights=gen_results.weights.tolist(), best_observation_features=best_obsf, gen_metadata=gen_metadata, ) def _predict( self, observation_features: List[ObservationFeatures] ) -> List[ObservationData]: if not self.model: raise ValueError(FIT_MODEL_ERROR.format(action="_model_predict")) # Convert observation features to array X = observation_features_to_array(self.parameters, observation_features) f, cov = not_none(self.model).predict(X=self._array_to_tensor(X)) f = f.detach().cpu().clone().numpy() cov = cov.detach().cpu().clone().numpy() if f.shape[-2] != X.shape[-2]: raise NotImplementedError( "Expected same number of predictions as the number of inputs but got " f"predictions of shape {f.shape} for inputs of shape {X.shape}. " "This was likely due to the use of one-to-many input transforms -- " "typically used for robust optimization -- which are not supported in" "TorchModelBridge.predict." ) # Convert resulting arrays to observations return array_to_observation_data(f=f, cov=cov, outcomes=self.outcomes) def _array_to_observation_features( self, X: np.ndarray, candidate_metadata: Optional[List[TCandidateMetadata]] ) -> List[ObservationFeatures]: return parse_observation_features( X=X, param_names=self.parameters, candidate_metadata=candidate_metadata ) def _transform_observation_features( self, observation_features: List[ObservationFeatures] ) -> Tensor: """Apply terminal transform to given observation features and return result as an N x D array of points. """ try: tobfs = np.array( [ # pyre-ignore[6]: Except statement below should catch wrongly # typed parameters. [float(of.parameters[p]) for p in self.parameters] for of in observation_features ] ) except (KeyError, TypeError): raise ValueError("Invalid formatting of observation features.") return self._array_to_tensor(tobfs) def _get_transformed_model_gen_args( self, search_space: SearchSpace, pending_observations: Dict[str, List[ObservationFeatures]], fixed_features: Optional[ObservationFeatures], model_gen_options: Optional[TConfig] = None, optimization_config: Optional[OptimizationConfig] = None, ) -> Tuple[SearchSpaceDigest, TorchOptConfig]: # Validation if not self.parameters: raise ValueError(FIT_MODEL_ERROR.format(action="_gen")) # Extract search space info search_space_digest = extract_search_space_digest( search_space=search_space, param_names=self.parameters ) if optimization_config is None: raise ValueError( f"{self.__class__.__name__} requires an OptimizationConfig " "to be specified" ) validate_optimization_config(optimization_config, self.outcomes) objective_weights = extract_objective_weights( objective=optimization_config.objective, outcomes=self.outcomes ) outcome_constraints = extract_outcome_constraints( outcome_constraints=optimization_config.outcome_constraints, outcomes=self.outcomes, ) linear_constraints = extract_parameter_constraints( search_space.parameter_constraints, self.parameters ) fixed_features_dict = get_fixed_features(fixed_features, self.parameters) if isinstance(optimization_config, MultiObjectiveOptimizationConfig): objective_thresholds = extract_objective_thresholds( objective_thresholds=optimization_config.objective_thresholds, objective=optimization_config.objective, outcomes=self.outcomes, ) opt_config_metrics = optimization_config.metrics else: objective_thresholds, opt_config_metrics = None, None pending_array = pending_observations_as_array_list( pending_observations, self.outcomes, self.parameters ) obj_w, out_c, lin_c, pend_o, obj_t = validate_and_apply_final_transform( objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, pending_observations=pending_array, objective_thresholds=objective_thresholds, final_transform=self._array_to_tensor, ) rounding_func = self._array_callable_to_tensor_callable( transform_callback(self.parameters, self.transforms) ) risk_measure = ( optimization_config.risk_measure if optimization_config is not None else None ) if risk_measure is not None: if not not_none(self.model)._supports_robust_optimization: raise UnsupportedError( f"{self.model.__class__.__name__} does not support robust " "optimization. Consider using modular BoTorch model instead." ) else: risk_measure = extract_risk_measure(risk_measure=risk_measure) torch_opt_config = TorchOptConfig( objective_weights=obj_w, outcome_constraints=out_c, objective_thresholds=obj_t, linear_constraints=lin_c, fixed_features=fixed_features_dict, pending_observations=pend_o, model_gen_options=model_gen_options or {}, rounding_func=rounding_func, opt_config_metrics=opt_config_metrics, is_moo=optimization_config.is_moo_problem, risk_measure=risk_measure, fit_out_of_design=self._fit_out_of_design, ) return search_space_digest, torch_opt_config def _transform_observations( self, observations: List[Observation] ) -> Tuple[Tensor, Tensor, Tensor]: """Apply terminal transform to given observation data and return result. Converts a set of observations to a tuple of - a (n x d) array of X - an (n x m) array of means - an (n x m x m) array of covariances """ observation_features, observation_data = separate_observations(observations) try: mean, cov = observation_data_to_array( outcomes=self.outcomes, observation_data=observation_data ) except (KeyError, TypeError): raise ValueError("Invalid formatting of observation data.") X = self._transform_observation_features(observation_features) return X, self._array_to_tensor(mean), self._array_to_tensor(cov) def _untransform_objective_thresholds( self, objective_thresholds: Tensor, objective_weights: Tensor, bounds: List[Tuple[Union[int, float], Union[int, float]]], opt_config_metrics: Dict[str, Metric], fixed_features: Optional[Dict[int, float]], ) -> List[ObjectiveThreshold]: thresholds_np = objective_thresholds.cpu().numpy() idxs = objective_weights.nonzero().view(-1).tolist() # Create transformed ObjectiveThresholds from numpy thresholds. thresholds = [] for idx in idxs: sign = torch.sign(objective_weights[idx]) thresholds.append( ObjectiveThreshold( metric=opt_config_metrics[self.outcomes[idx]], bound=thresholds_np[idx], relative=False, op=ComparisonOp.LEQ if sign < 0 else ComparisonOp.GEQ, ) ) fixed_features = fixed_features or {} fixed_features_obs = ObservationFeatures( parameters={ name: fixed_features[i] for i, name in enumerate(self.parameters) if i in fixed_features } ) for t in reversed(list(self.transforms.values())): if not isinstance(t, Cast): # Cast transform requires a valid hierarchical parameterization. # `fixed_features_obs` is incomplete, so it leads to an error. fixed_features_obs = t.untransform_observation_features( [fixed_features_obs] )[0] thresholds = t.untransform_outcome_constraints( outcome_constraints=thresholds, fixed_features=fixed_features_obs, ) return thresholds def _validate_observation_data( self, observation_data: List[ObservationData] ) -> None: if len(observation_data) == 0: raise ValueError( "Torch models cannot be fit without observation data. Possible " "reasons include empty data being passed to the model's constructor " "or data being excluded because it is out-of-design. Try setting " "`fit_out_of_design`=True during construction to fix the latter." ) def _extract_observation_data( self, observation_data: List[ObservationData], observation_features: List[ObservationFeatures], parameters: List[str], ) -> Tuple[ Dict[str, List[Tensor]], Dict[str, List[Tensor]], Dict[str, List[Tensor]], Dict[str, List[TCandidateMetadata]], bool, ]: """Extract observation features & data into tensors and metadata. Args: observation_data: A list of `ObservationData` from which to extract mean `Y` and variance `Yvar` observations. Must correspond 1:1 to the `observation_features`. observation_features: A list of `ObservationFeatures` from which to extract parameter values. Must correspond 1:1 to the `observation_data`. parameters: The names of the parameters to extract. Any observation features that are not included in `parameters` will be ignored. Returns: - A dictionary mapping metric names to lists of corresponding feature tensors `X`. - A dictionary mapping metric names to lists of corresponding mean observation tensors `Y`. - A dictionary mapping metric names to lists of corresponding variance observation tensors `Yvar`. - A dictionary mapping metric names to lists of corresponding metadata. - A boolean denoting whether any candidate metadata is not none. """ Xs: Dict[str, List[Tensor]] = defaultdict(list) Ys: Dict[str, List[Tensor]] = defaultdict(list) Yvars: Dict[str, List[Tensor]] = defaultdict(list) candidate_metadata_dict: Dict[str, List[TCandidateMetadata]] = defaultdict(list) any_candidate_metadata_is_not_none = False for obsd, obsf in zip(observation_data, observation_features): try: x = torch.tensor( [obsf.parameters[p] for p in parameters], dtype=self.dtype, device=self.device, ) except (KeyError, TypeError): raise ValueError("Out of design points cannot be converted.") for metric_name, mean, var in zip( obsd.metric_names, obsd.means, obsd.covariance.diagonal() ): Xs[metric_name].append(x) Ys[metric_name].append(mean) Yvars[metric_name].append(var) if obsf.metadata is not None: any_candidate_metadata_is_not_none = True candidate_metadata_dict[metric_name].append(obsf.metadata) return ( Xs, Ys, Yvars, candidate_metadata_dict, any_candidate_metadata_is_not_none, )
[docs]def validate_optimization_config( optimization_config: OptimizationConfig, outcomes: List[str] ) -> None: """Validate optimization config against model fitted outcomes. Args: optimization_config: Config to validate. outcomes: List of metric names w/ valid model fits. Raises: ValueError if: 1. Relative constraints are found 2. Optimization metrics are not present in model fitted outcomes. """ for c in optimization_config.outcome_constraints: if c.relative: raise ValueError(f"{c} is a relative constraint.") if isinstance(c, ScalarizedOutcomeConstraint): for c_metric in c.metrics: if c_metric.name not in outcomes: raise DataRequiredError( f"Scalarized constraint metric component {c.metric.name} " + "not found in fitted data." ) elif c.metric.name not in outcomes: raise DataRequiredError( f"Outcome constraint metric {c.metric.name} not found in fitted data." ) obj_metric_names = [m.name for m in optimization_config.objective.metrics] for obj_metric_name in obj_metric_names: if obj_metric_name not in outcomes: raise DataRequiredError( f"Objective metric {obj_metric_name} not found in fitted data." )