Source code for ax.storage.json_store.decoders

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

# pyre-strict

from __future__ import annotations

import inspect
import logging
from datetime import datetime
from pathlib import Path
from typing import Any, Dict, Iterable, List, Optional, Type, TYPE_CHECKING, Union

import torch
from ax.core.arm import Arm
from ax.core.base_trial import TrialStatus
from ax.core.batch_trial import (
    AbandonedArm,
    BatchTrial,
    GeneratorRunStruct,
    LifecycleStage,
)
from ax.core.generator_run import GeneratorRun
from ax.core.runner import Runner
from ax.core.trial import Trial
from ax.exceptions.storage import JSONDecodeError
from ax.modelbridge.transforms.base import Transform
from ax.storage.botorch_modular_registry import (
    CLASS_TO_REVERSE_REGISTRY,
    REVERSE_INPUT_TRANSFORM_REGISTRY,
    REVERSE_OUTCOME_TRANSFORM_REGISTRY,
)
from ax.storage.transform_registry import REVERSE_TRANSFORM_REGISTRY
from ax.utils.common.kwargs import warn_on_kwargs
from ax.utils.common.logger import get_logger
from ax.utils.common.typeutils import checked_cast
from ax.utils.common.typeutils_torch import torch_type_from_str
from botorch.models.transforms.input import ChainedInputTransform, InputTransform
from botorch.models.transforms.outcome import ChainedOutcomeTransform, OutcomeTransform

logger: logging.Logger = get_logger(__name__)


if TYPE_CHECKING:
    # import as module to make sphinx-autodoc-typehints happy
    from ax import core  # noqa F401


[docs]def batch_trial_from_json( experiment: core.experiment.Experiment, index: int, trial_type: Optional[str], status: TrialStatus, time_created: datetime, time_completed: Optional[datetime], time_staged: Optional[datetime], time_run_started: Optional[datetime], abandoned_reason: Optional[str], run_metadata: Optional[Dict[str, Any]], generator_run_structs: List[GeneratorRunStruct], runner: Optional[Runner], abandoned_arms_metadata: Dict[str, AbandonedArm], num_arms_created: int, status_quo: Optional[Arm], status_quo_weight_override: float, optimize_for_power: Optional[bool], # Allowing default values for backwards compatibility with # objects stored before these fields were added. failed_reason: Optional[str] = None, ttl_seconds: Optional[int] = None, generation_step_index: Optional[int] = None, properties: Optional[Dict[str, Any]] = None, stop_metadata: Optional[Dict[str, Any]] = None, lifecycle_stage: Optional[LifecycleStage] = None, **kwargs: Any, ) -> BatchTrial: """Load Ax BatchTrial from JSON. Other classes don't need explicit deserializers, because we can just use their constructors (see decoder.py). However, the constructor for Batch does not allow us to exactly recreate an existing object. """ batch = BatchTrial(experiment=experiment, ttl_seconds=ttl_seconds) batch._index = index batch._trial_type = trial_type batch._status = status batch._time_created = time_created batch._time_completed = time_completed batch._time_staged = time_staged batch._time_run_started = time_run_started batch._abandoned_reason = abandoned_reason batch._failed_reason = failed_reason batch._run_metadata = run_metadata or {} batch._stop_metadata = stop_metadata or {} batch._generator_run_structs = generator_run_structs batch._runner = runner batch._abandoned_arms_metadata = abandoned_arms_metadata batch._num_arms_created = num_arms_created batch._status_quo = status_quo batch._status_quo_weight_override = status_quo_weight_override batch.optimize_for_power = optimize_for_power batch._generation_step_index = generation_step_index batch._lifecycle_stage = lifecycle_stage batch._properties = properties batch._refresh_arms_by_name() # Trigger cache build warn_on_kwargs(callable_with_kwargs=BatchTrial, **kwargs) return batch
[docs]def trial_from_json( experiment: core.experiment.Experiment, index: int, trial_type: Optional[str], status: TrialStatus, time_created: datetime, time_completed: Optional[datetime], time_staged: Optional[datetime], time_run_started: Optional[datetime], abandoned_reason: Optional[str], run_metadata: Optional[Dict[str, Any]], generator_run: GeneratorRun, runner: Optional[Runner], num_arms_created: int, # Allowing default values for backwards compatibility with # objects stored before these fields were added. failed_reason: Optional[str] = None, ttl_seconds: Optional[int] = None, generation_step_index: Optional[int] = None, properties: Optional[Dict[str, Any]] = None, stop_metadata: Optional[Dict[str, Any]] = None, **kwargs: Any, ) -> Trial: """Load Ax trial from JSON. Other classes don't need explicit deserializers, because we can just use their constructors (see decoder.py). However, the constructor for Trial does not allow us to exactly recreate an existing object. """ trial = Trial( experiment=experiment, generator_run=generator_run, ttl_seconds=ttl_seconds ) trial._index = index trial._trial_type = trial_type # Swap `DISPATCHED` for `RUNNING`, since `DISPATCHED` is deprecated and nearly # equivalent to `RUNNING`. trial._status = status if status != TrialStatus.DISPATCHED else TrialStatus.RUNNING trial._time_created = time_created trial._time_completed = time_completed trial._time_staged = time_staged trial._time_run_started = time_run_started trial._abandoned_reason = abandoned_reason trial._failed_reason = failed_reason trial._run_metadata = run_metadata or {} trial._stop_metadata = stop_metadata or {} trial._runner = runner trial._num_arms_created = num_arms_created trial._generation_step_index = generation_step_index trial._properties = properties or {} warn_on_kwargs(callable_with_kwargs=Trial, **kwargs) return trial
[docs]def transform_type_from_json(object_json: Dict[str, Any]) -> Type[Transform]: """Load the transform type from JSON.""" index_in_registry = object_json.pop("index_in_registry") if index_in_registry not in REVERSE_TRANSFORM_REGISTRY: raise ValueError(f"Unknown transform '{object_json.pop('transform_type')}'") return REVERSE_TRANSFORM_REGISTRY[index_in_registry]
[docs]def input_transform_type_from_json(object_json: Dict[str, Any]) -> Type[InputTransform]: input_transform_type = object_json.pop("index") if input_transform_type not in REVERSE_INPUT_TRANSFORM_REGISTRY: raise ValueError(f"Unknown transform {input_transform_type}.") return REVERSE_INPUT_TRANSFORM_REGISTRY[input_transform_type]
[docs]def outcome_transform_type_from_json( object_json: Dict[str, Any] ) -> Type[OutcomeTransform]: outcome_transform_type = object_json.pop("index") if outcome_transform_type not in REVERSE_OUTCOME_TRANSFORM_REGISTRY: raise ValueError(f"Unknown transform {outcome_transform_type}.") return REVERSE_OUTCOME_TRANSFORM_REGISTRY[outcome_transform_type]
# pyre-fixme[3]: Return annotation cannot contain `Any`.
[docs]def class_from_json(json: Dict[str, Any]) -> Type[Any]: """Load any class registered in `CLASS_DECODER_REGISTRY` from JSON.""" index_in_registry = json.pop("index") class_path = json.pop("class") for _class in CLASS_TO_REVERSE_REGISTRY: if class_path == f"{_class}": reverse_registry = CLASS_TO_REVERSE_REGISTRY[_class] if index_in_registry not in reverse_registry: raise ValueError( f"Index '{index_in_registry}'" " is not registered in the reverse registry." ) return reverse_registry[index_in_registry] raise ValueError( f"{class_path} does not have a corresponding entry in " "CLASS_TO_REVERSE_REGISTRY." )
[docs]def tensor_from_json(json: Dict[str, Any]) -> torch.Tensor: try: device = ( checked_cast( torch.device, torch_type_from_str( identifier=json["device"]["value"], type_name="device" ), ) if torch.cuda.is_available() else torch.device("cpu") ) return torch.tensor( json["value"], dtype=checked_cast( torch.dtype, torch_type_from_str( identifier=json["dtype"]["value"], type_name="dtype" ), ), device=device, ) except KeyError as e: raise JSONDecodeError( f"Got KeyError {e} while attempting to construct a tensor from json. " f"Expected value, dtype, and device fields; got {json=}." )
[docs]def tensor_or_size_from_json(json: Dict[str, Any]) -> Union[torch.Tensor, torch.Size]: if json["__type"] == "Tensor": return tensor_from_json(json) elif json["__type"] == "torch_Size": return checked_cast( torch.Size, torch_type_from_str(identifier=json["value"], type_name="Size"), ) else: raise JSONDecodeError( f"Expected json encoding of a torch.Tensor or torch.Size. Got {json=}" )
# pyre-fixme[3]: Return annotation cannot contain `Any`. # pyre-fixme[2]: Parameter annotation cannot be `Any`.
[docs]def botorch_component_from_json(botorch_class: Any, json: Dict[str, Any]) -> Type[Any]: """Load any instance of `torch.nn.Module` or descendants registered in `CLASS_DECODER_REGISTRY` from state dict.""" state_dict = json.pop("state_dict") if issubclass(botorch_class, ChainedInputTransform): return botorch_class( **{ k: botorch_component_from_json( botorch_class=REVERSE_INPUT_TRANSFORM_REGISTRY[v.pop("__type")], json=v, ) for k, v in state_dict.items() } ) if issubclass(botorch_class, ChainedOutcomeTransform): return botorch_class( **{ k: botorch_component_from_json( botorch_class=REVERSE_OUTCOME_TRANSFORM_REGISTRY[v.pop("__type")], json=v, ) for k, v in state_dict.items() } ) class_path = json.pop("class") init_args = inspect.signature(botorch_class).parameters required_args = { p for p, v in init_args.items() if v.default is inspect._empty and p != "kwargs" } allowable_args = set(init_args) received_args = set(state_dict) missing_args = required_args - received_args if missing_args: raise ValueError( f"Missing required initialization args {missing_args} for class " f"{class_path}. For gpytorch objects, this is likely because the " "object's `state_dict` method does not return the args required " "for initialization." ) extra_args = received_args - allowable_args if extra_args: raise ValueError( f"Received unused args {extra_args} for class {class_path}. " "For gpytorch objects, this is likely because the object's " "`state_dict` method returns these extra args, which could " "indicate that the object's state will not be fully recreated " "by this serialization/deserialization method." ) return botorch_class( **{ k: ( tensor_or_size_from_json(json=v) if isinstance(v, dict) and "__type" in v else v ) for k, v in state_dict.items() } )
[docs]def pathlib_from_json(pathsegments: Union[str, Iterable[str]]) -> Path: if isinstance(pathsegments, str): return Path(pathsegments) return Path(*pathsegments)