Source code for ax.utils.testing.modeling_stubs

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from logging import Logger
from typing import Any, Dict, List, Optional, Type

import numpy as np
from ax.core.base_trial import TrialStatus
from ax.core.experiment import Experiment
from ax.core.observation import Observation, ObservationData, ObservationFeatures
from ax.core.optimization_config import OptimizationConfig
from ax.core.parameter import FixedParameter, RangeParameter
from ax.core.search_space import SearchSpace
from ax.modelbridge.base import ModelBridge
from ax.modelbridge.dispatch_utils import choose_generation_strategy
from ax.modelbridge.factory import get_sobol
from ax.modelbridge.generation_node import GenerationNode
from ax.modelbridge.generation_strategy import GenerationStep, GenerationStrategy
from ax.modelbridge.model_spec import ModelSpec
from ax.modelbridge.registry import Models
from ax.modelbridge.transforms.base import Transform
from ax.modelbridge.transforms.int_to_float import IntToFloat
from ax.modelbridge.transition_criterion import (
    MaxGenerationParallelism,
    MaxTrials,
    MinimumPreferenceOccurances,
    MinTrials,
)
from ax.models.torch.botorch_modular.surrogate import Surrogate
from ax.utils.common.logger import get_logger
from ax.utils.testing.core_stubs import (
    get_experiment,
    get_search_space,
    get_search_space_for_value,
)
from botorch.acquisition.monte_carlo import qNoisyExpectedImprovement
from botorch.models.fully_bayesian import SaasFullyBayesianSingleTaskGP
from botorch.models.transforms.input import InputTransform, Normalize
from botorch.models.transforms.outcome import OutcomeTransform, Standardize

logger: Logger = get_logger(__name__)


# Observations


[docs]def get_observation_features() -> ObservationFeatures: return ObservationFeatures(parameters={"x": 2.0, "y": 10.0}, trial_index=0)
[docs]def get_observation( first_metric_name: str = "a", second_metric_name: str = "b", ) -> Observation: return Observation( features=ObservationFeatures(parameters={"x": 2.0, "y": 10.0}, trial_index=0), data=ObservationData( means=np.array([2.0, 4.0]), covariance=np.array([[1.0, 2.0], [3.0, 4.0]]), metric_names=[first_metric_name, second_metric_name], ), arm_name="1_1", )
[docs]def get_observation1( first_metric_name: str = "a", second_metric_name: str = "b", ) -> Observation: return Observation( features=ObservationFeatures(parameters={"x": 2.0, "y": 10.0}, trial_index=0), data=ObservationData( means=np.array([2.0, 4.0]), covariance=np.array([[1.0, 2.0], [3.0, 4.0]]), metric_names=[first_metric_name, second_metric_name], ), arm_name="1_1", )
[docs]def get_observation_status_quo0( first_metric_name: str = "a", second_metric_name: str = "b", ) -> Observation: return Observation( features=ObservationFeatures( parameters={"w": 0.85, "x": 1, "y": "baz", "z": False}, trial_index=0, ), data=ObservationData( means=np.array([2.0, 4.0]), covariance=np.array([[1.0, 2.0], [3.0, 4.0]]), metric_names=[first_metric_name, second_metric_name], ), arm_name="0_0", )
[docs]def get_observation_status_quo1( first_metric_name: str = "a", second_metric_name: str = "b", ) -> Observation: return Observation( features=ObservationFeatures( parameters={"w": 0.85, "x": 1, "y": "baz", "z": False}, trial_index=1, ), data=ObservationData( means=np.array([2.0, 4.0]), covariance=np.array([[1.0, 2.0], [3.0, 4.0]]), metric_names=[first_metric_name, second_metric_name], ), arm_name="0_0", )
[docs]def get_observation1trans( first_metric_name: str = "a", second_metric_name: str = "b", ) -> Observation: return Observation( features=ObservationFeatures(parameters={"x": 9.0, "y": 121.0}, trial_index=0), data=ObservationData( means=np.array([9.0, 25.0]), covariance=np.array([[1.0, 2.0], [3.0, 4.0]]), metric_names=[first_metric_name, second_metric_name], ), arm_name="1_1", )
[docs]def get_observation2( first_metric_name: str = "a", second_metric_name: str = "b", ) -> Observation: return Observation( features=ObservationFeatures(parameters={"x": 3.0, "y": 2.0}, trial_index=1), data=ObservationData( means=np.array([2.0, 1.0]), covariance=np.array([[2.0, 3.0], [4.0, 5.0]]), metric_names=[first_metric_name, second_metric_name], ), arm_name="1_1", )
[docs]def get_observation2trans( first_metric_name: str = "a", second_metric_name: str = "b", ) -> Observation: return Observation( features=ObservationFeatures(parameters={"x": 16.0, "y": 9.0}, trial_index=1), data=ObservationData( means=np.array([9.0, 4.0]), covariance=np.array([[2.0, 3.0], [4.0, 5.0]]), metric_names=[first_metric_name, second_metric_name], ), arm_name="1_1", )
# Modeling layer
[docs]def get_generation_strategy( with_experiment: bool = False, with_callable_model_kwarg: bool = True, with_completion_criteria: int = 0, with_generation_nodes: bool = False, ) -> GenerationStrategy: if with_generation_nodes: gs = sobol_gpei_generation_node_gs() gs._nodes[0]._model_spec_to_gen_from = ModelSpec( model_enum=Models.SOBOL, model_kwargs={"init_position": 3}, model_gen_kwargs={"some_gen_kwarg": "some_value"}, ) if with_callable_model_kwarg: # pyre-ignore[16]: testing hack to test serialization of callable kwargs # in generation steps. gs._nodes[0]._model_spec_to_gen_from.model_kwargs[ "model_constructor" ] = get_sobol else: gs = choose_generation_strategy( search_space=get_search_space(), should_deduplicate=True ) if with_callable_model_kwarg: # pyre-ignore[16]: testing hack to test serialization of callable kwargs # in generation steps. gs._steps[0].model_kwargs["model_constructor"] = get_sobol if with_experiment: gs._experiment = get_experiment() if with_completion_criteria > 0: gs._steps[0].num_trials = -1 gs._steps[0].completion_criteria = [ MinimumPreferenceOccurances(metric_name="m1", threshold=3) ] * with_completion_criteria return gs
[docs]def sobol_gpei_generation_node_gs() -> GenerationStrategy: """Returns a basic SOBOL +GPEI GS usecase using GenerationNodes for testing""" sobol_criterion = [ MaxTrials( threshold=5, transition_to="GPEI_node", block_gen_if_met=True, only_in_statuses=None, not_in_statuses=[TrialStatus.FAILED, TrialStatus.ABANDONED], ) ] gpei_criterion = [ MaxTrials( threshold=2, transition_to=None, block_gen_if_met=True, only_in_statuses=None, not_in_statuses=[TrialStatus.FAILED, TrialStatus.ABANDONED], ), # Here MinTrials and MaxParallelism don't enforce anything, but # we wanted to have an instance of them to test for storage compatibility. MinTrials( threshold=0, transition_to=None, block_gen_if_met=False, only_in_statuses=[TrialStatus.CANDIDATE], not_in_statuses=None, ), MaxGenerationParallelism( threshold=1000, transition_to=None, block_gen_if_met=True, only_in_statuses=[TrialStatus.RUNNING], not_in_statuses=None, ), ] step_model_kwargs = {"silently_filter_kwargs": True} sobol_model_spec = ModelSpec( model_enum=Models.SOBOL, model_kwargs=step_model_kwargs, model_gen_kwargs={}, ) gpei_model_spec = ModelSpec( model_enum=Models.GPEI, model_kwargs=step_model_kwargs, model_gen_kwargs={}, ) sobol_node = GenerationNode( node_name="sobol_node", transition_criteria=sobol_criterion, model_specs=[sobol_model_spec], gen_unlimited_trials=False, ) gpei_node = GenerationNode( node_name="GPEI_node", transition_criteria=gpei_criterion, model_specs=[gpei_model_spec], gen_unlimited_trials=False, ) sobol_GPEI_GS_nodes = GenerationStrategy( name="Sobol+GPEI_Nodes", nodes=[sobol_node, gpei_node], steps=None, ) return sobol_GPEI_GS_nodes
[docs]def get_transform_type() -> Type[Transform]: return IntToFloat
[docs]def get_input_transform_type() -> Type[InputTransform]: return Normalize
[docs]def get_outcome_transfrom_type() -> Type[OutcomeTransform]: return Standardize
[docs]def get_experiment_for_value() -> Experiment: return Experiment(get_search_space_for_value(), "test")
[docs]def get_legacy_list_surrogate_generation_step_as_dict() -> Dict[str, Any]: """ For use ensuring backwards compatibility loading the now deprecated ListSurrogate. """ # Generated via `get_sobol_botorch_modular_saas_fully_bayesian_single_task_gp_qnei` # before new multi-Surrogate Model and new Surrogate diffs D42013742 return { "__type": "GenerationStep", "model": {"__type": "Models", "name": "BOTORCH_MODULAR"}, "num_trials": -1, "min_trials_observed": 0, "completion_criteria": [], "max_parallelism": 1, "use_update": False, "enforce_num_trials": True, "model_kwargs": { "surrogate": { "__type": "ListSurrogate", "botorch_submodel_class_per_outcome": {}, "botorch_submodel_class": { "__type": "Type[Model]", "index": "SaasFullyBayesianSingleTaskGP", "class": "<class 'botorch.models.model.Model'>", }, "submodel_options_per_outcome": {}, "submodel_options": {}, "mll_class": { "__type": "Type[MarginalLogLikelihood]", "index": "ExactMarginalLogLikelihood", "class": ( "<class 'gpytorch.mlls.marginal_log_likelihood." "MarginalLogLikelihood'>" ), }, "mll_options": {}, "submodel_outcome_transforms": [ { "__type": "Standardize", "index": { "__type": "Type[OutcomeTransform]", "index": "Standardize", "class": ( "<class 'botorch.models.transforms.outcome." "OutcomeTransform'>" ), }, "class": ( "<class 'botorch.models.transforms.outcome.Standardize'>" ), "state_dict": {"m": 1, "outputs": None, "min_stdv": 1e-8}, } ], "submodel_input_transforms": [ { "__type": "Normalize", "index": { "__type": "Type[InputTransform]", "index": "Normalize", "class": ( "<class 'botorch.models.transforms.input." "InputTransform'>" ), }, "class": "<class 'botorch.models.transforms.input.Normalize'>", "state_dict": { "d": 3, "indices": None, "transform_on_train": True, "transform_on_eval": True, "transform_on_fantasize": True, "reverse": False, "min_range": 1e-08, "learn_bounds": False, }, } ], "submodel_covar_module_class": None, "submodel_covar_module_options": {}, "submodel_likelihood_class": None, "submodel_likelihood_options": {}, }, "botorch_acqf_class": { "__type": "Type[AcquisitionFunction]", "index": "qNoisyExpectedImprovement", "class": "<class 'botorch.acquisition.acquisition.AcquisitionFunction'>", # noqa }, }, "model_gen_kwargs": {}, "index": -1, "should_deduplicate": False, }
[docs]def get_surrogate_generation_step() -> GenerationStep: return GenerationStep( model=Models.BOTORCH_MODULAR, num_trials=-1, max_parallelism=1, model_kwargs={ "surrogate": Surrogate( botorch_model_class=SaasFullyBayesianSingleTaskGP, input_transform_classes=[Normalize], input_transform_options={ "Normalize": { "d": 3, "indices": None, "transform_on_train": True, "transform_on_eval": True, "transform_on_fantasize": True, "reverse": False, "min_range": 1e-08, "learn_bounds": False, } }, outcome_transform_classes=[Standardize], outcome_transform_options={ "Standardize": {"m": 1, "outputs": None, "min_stdv": 1e-8} }, ), "botorch_acqf_class": qNoisyExpectedImprovement, }, )
[docs]def get_surrogate_as_dict() -> Dict[str, Any]: """ For use ensuring backwards compatibility when loading Surrogate with input_transform and outcome_transform kwargs. """ return { "__type": "Surrogate", "botorch_model_class": None, "model_options": {}, "mll_class": { "__type": "Type[MarginalLogLikelihood]", "index": "ExactMarginalLogLikelihood", "class": ( "<class 'gpytorch.mlls.marginal_log_likelihood." "MarginalLogLikelihood'>" ), }, "mll_options": {}, "outcome_transform": None, "input_transform": None, "covar_module_class": None, "covar_module_options": {}, "likelihood_class": None, "likelihood_options": {}, "allow_batched_models": False, }
[docs]def get_surrogate_spec_as_dict( model_class: Optional[str] = None, with_legacy_input_transform: bool = False ) -> Dict[str, Any]: """ For use ensuring backwards compatibility when loading SurrogateSpec with input_transform and outcome_transform kwargs. """ if model_class is None: model_class = "SingleTaskGP" if with_legacy_input_transform: input_transform = { "__type": "Normalize", "index": { "__type": "Type[InputTransform]", "index": "Normalize", "class": "<class 'botorch.models.transforms.input.InputTransform'>", }, "class": "<class 'botorch.models.transforms.input.Normalize'>", "state_dict": { "d": 7, "indices": None, "bounds": None, "batch_shape": {"__type": "torch_Size", "value": "[]"}, "transform_on_train": True, "transform_on_eval": True, "transform_on_fantasize": True, "reverse": False, "min_range": 1e-08, "learn_bounds": False, }, } else: input_transform = None return { "__type": "SurrogateSpec", "botorch_model_class": { "__type": "Type[Model]", "index": model_class, "class": "<class 'botorch.models.model.Model'>", }, "botorch_model_kwargs": {}, "mll_class": { "__type": "Type[MarginalLogLikelihood]", "index": "ExactMarginalLogLikelihood", "class": ( "<class 'gpytorch.mlls.marginal_log_likelihood" ".MarginalLogLikelihood'>" ), }, "mll_kwargs": {}, "covar_module_class": None, "covar_module_kwargs": None, "likelihood_class": None, "likelihood_kwargs": None, "input_transform": input_transform, "outcome_transform": None, "allow_batched_models": False, "outcomes": [], }
[docs]class transform_1(Transform):
[docs] def transform_search_space(self, search_space: SearchSpace) -> SearchSpace: new_ss = search_space.clone() for param in new_ss.parameters.values(): if isinstance(param, FixedParameter): param._value += 1.0 elif isinstance(param, RangeParameter): param._lower += 1.0 param._upper += 1.0 return new_ss
[docs] def transform_optimization_config( self, optimization_config: OptimizationConfig, modelbridge: Optional[ModelBridge], fixed_features: Optional[ObservationFeatures], ) -> OptimizationConfig: return ( # pyre-ignore[7]: pyre is right, this is a hack for testing. # pyre-fixme[58]: `+` is not supported for operand types # `OptimizationConfig` and `int`. optimization_config + 1 if isinstance(optimization_config, int) else optimization_config )
[docs] def transform_observation_features( self, observation_features: List[ObservationFeatures] ) -> List[ObservationFeatures]: for obsf in observation_features: for p_name in obsf.parameters: obsf.parameters[p_name] += 1 # pyre-ignore return observation_features
def _transform_observation_data( self, observation_data: List[ObservationData], ) -> List[ObservationData]: for obsd in observation_data: obsd.means += 1 return observation_data
[docs] def untransform_observation_features( self, observation_features: List[ObservationFeatures] ) -> List[ObservationFeatures]: for obsf in observation_features: for p_name in obsf.parameters: obsf.parameters[p_name] -= 1 # pyre-ignore return observation_features
def _untransform_observation_data( self, observation_data: List[ObservationData], ) -> List[ObservationData]: for obsd in observation_data: obsd.means -= 1 return observation_data
[docs]class transform_2(Transform):
[docs] def transform_search_space(self, search_space: SearchSpace) -> SearchSpace: new_ss = search_space.clone() for param in new_ss.parameters.values(): if isinstance(param, FixedParameter): param._value *= 2.0 elif isinstance(param, RangeParameter): param._lower *= 2.0 param._upper *= 2.0 return new_ss
[docs] def transform_optimization_config( self, optimization_config: OptimizationConfig, modelbridge: Optional[ModelBridge], fixed_features: Optional[ObservationFeatures], ) -> OptimizationConfig: return ( # pyre-fixme[58]: `**` is not supported for operand types # `OptimizationConfig` and `int`. optimization_config**2 if isinstance(optimization_config, int) else optimization_config )
[docs] def transform_observation_features( self, observation_features: List[ObservationFeatures] ) -> List[ObservationFeatures]: for obsf in observation_features: for pname in obsf.parameters: obsf.parameters[pname] = obsf.parameters[pname] ** 2 # pyre-ignore return observation_features
def _transform_observation_data( self, observation_data: List[ObservationData], ) -> List[ObservationData]: for obsd in observation_data: obsd.means = obsd.means**2 return observation_data
[docs] def untransform_observation_features( self, observation_features: List[ObservationFeatures] ) -> List[ObservationFeatures]: for obsf in observation_features: for pname in obsf.parameters: obsf.parameters[pname] = np.sqrt(obsf.parameters[pname]) return observation_features
def _untransform_observation_data( self, observation_data: List[ObservationData], ) -> List[ObservationData]: for obsd in observation_data: obsd.means = np.sqrt(obsd.means) return observation_data