Source code for ax.models.torch.cbo_lcem
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, List, Optional
import torch
from ax.models.torch.botorch import BotorchModel
from botorch.fit import fit_gpytorch_mll
from botorch.models.contextual_multioutput import LCEMGP
from botorch.models.model_list_gp_regression import ModelListGP
from gpytorch.mlls.sum_marginal_log_likelihood import SumMarginalLogLikelihood
from torch import Tensor
MIN_OBSERVED_NOISE_LEVEL = 1e-7
[docs]class LCEMBO(BotorchModel):
r"""Does Bayesian optimization with LCE-M GP."""
def __init__(
self,
context_cat_feature: Optional[Tensor] = None,
context_emb_feature: Optional[Tensor] = None,
embs_dim_list: Optional[List[int]] = None,
) -> None:
self.context_cat_feature = context_cat_feature
self.context_emb_feature = context_emb_feature
self.embs_dim_list = embs_dim_list
super().__init__(model_constructor=self.get_and_fit_model)
[docs] def get_and_fit_model(
self,
Xs: List[Tensor],
Ys: List[Tensor],
Yvars: List[Tensor],
task_features: List[int],
fidelity_features: List[int],
metric_names: List[str],
state_dict: Optional[Dict[str, Tensor]] = None,
fidelity_model_id: Optional[int] = None,
**kwargs: Any,
) -> ModelListGP:
"""Get a fitted multi-task contextual GP model for each outcome.
Args:
Xs: List of X data, one tensor per outcome.
Ys: List of Y data, one tensor per outcome.
Yvars:List of Noise variance of Yvar data, one tensor per outcome.
task_features: List of columns of X that are tasks.
Returns: ModeListGP that each model is a fitted LCEM GP model.
"""
if len(task_features) == 1:
task_feature = task_features[0]
elif len(task_features) > 1:
raise NotImplementedError(
f"LCEMBO only supports 1 task feature (got {task_features})"
)
else:
raise ValueError("LCEMBO requires context input as task features")
models = []
for i, X in enumerate(Xs):
# validate input Yvars
Yvar = Yvars[i].clamp_min_(MIN_OBSERVED_NOISE_LEVEL)
is_nan = torch.isnan(Yvar)
all_nan_Yvar = torch.all(is_nan)
if all_nan_Yvar:
gp_m = LCEMGP(
train_X=X,
train_Y=Ys[i],
task_feature=task_feature,
context_cat_feature=self.context_cat_feature,
context_emb_feature=self.context_emb_feature,
embs_dim_list=self.embs_dim_list,
)
else:
gp_m = LCEMGP(
train_X=X,
train_Y=Ys[i],
train_Yvar=Yvar,
task_feature=task_feature,
context_cat_feature=self.context_cat_feature,
context_emb_feature=self.context_emb_feature,
embs_dim_list=self.embs_dim_list,
)
models.append(gp_m)
# Use a ModelListGP
model = ModelListGP(*models)
model.to(Xs[0])
mll = SumMarginalLogLikelihood(model.likelihood, model)
fit_gpytorch_mll(mll)
return model