#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
from collections import defaultdict
from datetime import timedelta
from logging import Logger
from typing import (
Any,
Callable,
Dict,
Iterable,
List,
Optional,
Tuple,
TYPE_CHECKING,
Union,
)
import gpytorch
import numpy as np
import pandas as pd
import plotly.graph_objects as go
from ax.core.base_trial import TrialStatus
from ax.core.data import Data
from ax.core.experiment import Experiment
from ax.core.generator_run import GeneratorRunType
from ax.core.map_data import MapData
from ax.core.map_metric import MapMetric
from ax.core.metric import Metric
from ax.core.multi_type_experiment import MultiTypeExperiment
from ax.core.objective import MultiObjective, ScalarizedObjective
from ax.core.trial import BaseTrial
from ax.early_stopping.strategies.base import BaseEarlyStoppingStrategy
from ax.exceptions.core import UserInputError
from ax.modelbridge import ModelBridge
from ax.modelbridge.cross_validation import cross_validate
from ax.modelbridge.torch import TorchModelBridge
from ax.plot.contour import interact_contour_plotly
from ax.plot.diagnostic import interact_cross_validation_plotly
from ax.plot.feature_importances import plot_feature_importance_by_feature_plotly
from ax.plot.helper import get_range_parameters_from_list
from ax.plot.pareto_frontier import (
_pareto_frontier_plot_input_processing,
_validate_experiment_and_get_optimization_config,
scatter_plot_with_hypervolume_trace_plotly,
scatter_plot_with_pareto_frontier_plotly,
)
from ax.plot.pareto_utils import _extract_observed_pareto_2d
from ax.plot.scatter import interact_fitted_plotly, plot_multiple_metrics
from ax.plot.slice import interact_slice_plotly
from ax.plot.trace import (
map_data_multiple_metrics_dropdown_plotly,
optimization_trace_single_method_plotly,
)
from ax.service.utils.best_point import _derel_opt_config_wrapper, _is_row_feasible
from ax.service.utils.early_stopping import get_early_stopping_metrics
from ax.utils.common.logger import get_logger
from ax.utils.common.typeutils import checked_cast, not_none
from ax.utils.sensitivity.sobol_measures import ax_parameter_sens
from pandas.core.frame import DataFrame
if TYPE_CHECKING:
from ax.service.scheduler import Scheduler
logger: Logger = get_logger(__name__)
FEATURE_IMPORTANCE_CAPTION = (
"<b>NOTE:</b> This plot is intended for advanced users. Specifically,<br>"
"it is a measure of sensitivity/smoothness, so parameters of<br>"
"relatively low importance may still be important to tune."
)
CROSS_VALIDATION_CAPTION = (
"<b>NOTE:</b> We have tried our best to only plot the region of interest.<br>"
"This may hide outliers. You can autoscale the axes to see all trials."
)
FEASIBLE_COL_NAME = "is_feasible"
# pyre-ignore[11]: Annotation `go.Figure` is not defined as a type.
def _get_cross_validation_plots(model: ModelBridge) -> List[go.Figure]:
cv = cross_validate(model=model)
return [
interact_cross_validation_plotly(
cv_results=cv, caption=CROSS_VALIDATION_CAPTION
)
]
def _get_objective_trace_plot(
experiment: Experiment,
data: Data,
model_transitions: List[int],
true_objective_metric_name: Optional[str] = None,
) -> Iterable[go.Figure]:
if experiment.is_moo_problem:
return [
scatter_plot_with_hypervolume_trace_plotly(experiment=experiment),
*_pairwise_pareto_plotly_scatter(experiment=experiment),
]
optimization_config = experiment.optimization_config
if optimization_config is None:
return []
metric_names = (
metric_name
for metric_name in [
optimization_config.objective.metric.name,
true_objective_metric_name,
]
if metric_name is not None
)
plots = [
optimization_trace_single_method_plotly(
y=np.array([data.df[data.df["metric_name"] == metric_name]["mean"]]),
title=f"Best {metric_name} found vs. # of iterations",
ylabel=metric_name,
model_transitions=model_transitions,
# Try and use the metric's lower_is_better property, but fall back on
# objective's minimize property if relevent
optimization_direction=(
(
"minimize"
if experiment.metrics[metric_name].lower_is_better is True
else "maximize"
)
if experiment.metrics[metric_name].lower_is_better is not None
else (
"minimize" if optimization_config.objective.minimize else "maximize"
)
),
plot_trial_points=True,
)
for metric_name in metric_names
]
return [plot for plot in plots if plot is not None]
def _get_objective_v_param_plots(
experiment: Experiment,
model: ModelBridge,
max_num_slice_plots: int = 50,
max_num_contour_plots: int = 20,
) -> List[go.Figure]:
search_space = experiment.search_space
range_params = get_range_parameters_from_list(
list(search_space.range_parameters.values()), min_num_values=5
)
if len(range_params) < 1:
# if search space contains no range params
logger.warning(
"`_get_objective_v_param_plot` requires a search space with at least one "
"`RangeParameter`. Returning an empty list."
)
return []
num_range_params = len(range_params)
num_metrics = len(experiment.metrics)
num_slice_plots = num_range_params * num_metrics
output_plots = []
if num_slice_plots <= max_num_slice_plots:
# parameter slice plot
output_plots += [
interact_slice_plotly(
model=model,
)
]
else:
warning_msg = (
f"Skipping creation of {num_slice_plots} slice plots since that "
f"exceeds <br>`max_num_slice_plots = {max_num_slice_plots}`."
"<br>Users can plot individual slice plots with the <br>python "
"function ax.plot.slice.plot_slice_plotly."
)
# TODO: return a warning here then convert to a plot/message/etc. downstream.
warning_plot = _warn_and_create_warning_plot(warning_msg=warning_msg)
output_plots.append(warning_plot)
num_contour_plots = num_range_params * (num_range_params - 1) * num_metrics
if num_range_params > 1 and num_contour_plots <= max_num_contour_plots:
# contour plots
try:
with gpytorch.settings.max_eager_kernel_size(float("inf")):
output_plots += [
interact_contour_plotly(
model=not_none(model),
metric_name=metric_name,
)
for metric_name in model.metric_names
]
# `mean shape torch.Size` RunTimeErrors, pending resolution of
# https://github.com/cornellius-gp/gpytorch/issues/1853
except RuntimeError as e:
logger.warning(f"Contour plotting failed with error: {e}.")
elif num_contour_plots > max_num_contour_plots:
warning_msg = (
f"Skipping creation of {num_contour_plots} contour plots since that "
f"exceeds <br>`max_num_contour_plots = {max_num_contour_plots}`."
"<br>Users can plot individual contour plots with the <br>python "
"function ax.plot.contour.plot_contour_plotly."
)
# TODO: return a warning here then convert to a plot/message/etc. downstream.
warning_plot = _warn_and_create_warning_plot(warning_msg=warning_msg)
output_plots.append(warning_plot)
return output_plots
def _get_suffix(input_str: str, delim: str = ".", n_chunks: int = 1) -> str:
return delim.join(input_str.split(delim)[-n_chunks:])
def _get_shortest_unique_suffix_dict(
input_str_list: List[str], delim: str = "."
) -> Dict[str, str]:
"""Maps a list of strings to their shortest unique suffixes
Maps all original strings to the smallest number of chunks, as specified by
delim, that are not a suffix of any other original string. If the original
string was a suffix of another string, map it to its unaltered self.
Args:
input_str_list: a list of strings to create the suffix mapping for
delim: the delimiter used to split up the strings into meaningful chunks
Returns:
dict: A dict with the original strings as keys and their abbreviations as
values
"""
# all input strings must be unique
assert len(input_str_list) == len(set(input_str_list))
if delim == "":
raise ValueError("delim must be a non-empty string.")
suffix_dict = defaultdict(list)
# initialize suffix_dict with last chunk
for istr in input_str_list:
suffix_dict[_get_suffix(istr, delim=delim, n_chunks=1)].append(istr)
max_chunks = max(len(istr.split(delim)) for istr in input_str_list)
if max_chunks == 1:
return {istr: istr for istr in input_str_list}
# the upper range of this loop is `max_chunks + 2` because:
# - `i` needs to take the value of `max_chunks`, hence one +1
# - the contents of the loop are run one more time to check if `all_unique`,
# hence the other +1
for i in range(2, max_chunks + 2):
new_dict = defaultdict(list)
all_unique = True
for suffix, suffix_str_list in suffix_dict.items():
if len(suffix_str_list) > 1:
all_unique = False
for istr in suffix_str_list:
new_dict[_get_suffix(istr, delim=delim, n_chunks=i)].append(istr)
else:
new_dict[suffix] = suffix_str_list
if all_unique:
if len(set(input_str_list)) != len(suffix_dict.keys()):
break
return {
suffix_str_list[0]: suffix
for suffix, suffix_str_list in suffix_dict.items()
}
suffix_dict = new_dict
# If this function has not yet exited, some input strings still share a suffix.
# This is not expected, but in this case, the function will return the identity
# mapping, i.e., a dict with the original strings as both keys and values.
logger.warning(
"Something went wrong. Returning dictionary with original strings as keys and "
"values."
)
return {istr: istr for istr in input_str_list}
[docs]def get_standard_plots(
experiment: Experiment,
model: Optional[ModelBridge],
data: Optional[Data] = None,
model_transitions: Optional[List[int]] = None,
true_objective_metric_name: Optional[str] = None,
early_stopping_strategy: Optional[BaseEarlyStoppingStrategy] = None,
limit_points_per_plot: Optional[int] = None,
global_sensitivity_analysis: bool = True,
) -> List[go.Figure]:
"""Extract standard plots for single-objective optimization.
Extracts a list of plots from an ``Experiment`` and ``ModelBridge`` of general
interest to an Ax user. Currently not supported are
- TODO: multi-objective optimization
- TODO: ChoiceParameter plots
Args:
- experiment: The ``Experiment`` from which to obtain standard plots.
- model: The ``ModelBridge`` used to suggest trial parameters.
- data: If specified, data, to which to fit the model before generating plots.
- model_transitions: The arm numbers at which shifts in generation_strategy
occur.
- true_objective_metric_name: Name of the metric to use as the true objective.
- early_stopping_strategy: Early stopping strategy used throughout the
experiment; used for visualizing when curves are stopped.
- limit_points_per_plot: Limit the number of points used per metric in
each curve plot. Passed to `_get_curve_plot_dropdown`.
- global_sensitivity_analysis: If True, plot total Variance-based sensitivity
analysis for the model parameters. If False, plot sensitivities based on
GP kernel lengthscales. Defaults to True.
Returns:
- a plot of objective value vs. trial index, to show experiment progression
- a plot of objective value vs. range parameter values, only included if the
model associated with generation_strategy can create predictions. This
consists of:
- a plot_slice plot if the search space contains one range parameter
- an interact_contour plot if the search space contains multiple
range parameters
"""
if (
true_objective_metric_name is not None
and true_objective_metric_name not in experiment.metrics.keys()
):
raise ValueError(
f"true_objective_metric_name='{true_objective_metric_name}' is not present "
f"in experiment.metrics={experiment.metrics}. Please add a valid "
"true_objective_metric_name or remove the optional parameter to get "
"standard plots."
)
objective = not_none(experiment.optimization_config).objective
if isinstance(objective, ScalarizedObjective):
logger.warning(
"get_standard_plots does not currently support ScalarizedObjective "
"optimization experiments. Returning an empty list."
)
return []
if data is None:
data = experiment.fetch_data()
if data.df.empty:
logger.info(f"Experiment {experiment} does not yet have data, nothing to plot.")
return []
output_plot_list = []
try:
output_plot_list.extend(
_get_objective_trace_plot(
experiment=experiment,
data=data,
model_transitions=model_transitions
if model_transitions is not None
else [],
true_objective_metric_name=true_objective_metric_name,
)
)
except Exception as e:
# Allow model-based plotting to proceed if objective_trace plotting fails.
logger.exception(f"Plotting `objective_trace` failed with error {e}")
pass
# Objective vs. parameter plot requires a `Model`, so add it only if model
# is alrady available. In cases where initially custom trials are attached,
# model might not yet be set on the generation strategy.
if model:
# TODO: Check if model can predict in favor of try/catch.
try:
if true_objective_metric_name is not None:
output_plot_list.append(
_objective_vs_true_objective_scatter(
model=model,
objective_metric_name=objective.metric_names[0],
true_objective_metric_name=true_objective_metric_name,
)
)
output_plot_list.extend(
_get_objective_v_param_plots(
experiment=experiment,
model=model,
)
)
output_plot_list.extend(_get_cross_validation_plots(model=model))
# sensitivity plot
sens = None
importance_measure = ""
if global_sensitivity_analysis and isinstance(model, TorchModelBridge):
try:
sens = ax_parameter_sens(model, order="total")
importance_measure = (
'<a href="https://en.wikipedia.org/wiki/Variance-based_'
'sensitivity_analysis">Variance-based sensitivity analysis</a>'
)
except Exception as e:
logger.info(f"Failed to compute global feature sensitivities: {e}")
feature_importance_plot = plot_feature_importance_by_feature_plotly(
model=model,
# pyre-ignore [6]: In call for argument `sensitivity_values`,
# expected `Optional[Dict[str, Dict[str, Union[float, ndarray]]]]`
# but got `Dict[str, Dict[str, ndarray]]`.
sensitivity_values=sens,
relative=False,
caption=FEATURE_IMPORTANCE_CAPTION if importance_measure == "" else "",
importance_measure=importance_measure,
)
feature_importance_plot.layout.title = "[ADVANCED] " + str(
# pyre-fixme[16]: go.Figure has no attribute `layout`
feature_importance_plot.layout.title.text
)
output_plot_list.append(feature_importance_plot)
output_plot_list.append(interact_fitted_plotly(model=model, rel=False))
except Exception as e:
logger.exception(f"Feature importance plot failed with error: {e}")
# Get plots for MapMetrics
map_metrics = [m for m in experiment.metrics.values() if isinstance(m, MapMetric)]
if map_metrics:
# Sort so that objective metrics appear first
map_metrics.sort(
key=lambda e: e.name in [m.name for m in objective.metrics],
reverse=True,
)
for by_walltime in [False, True]:
output_plot_list.append(
_get_curve_plot_dropdown(
experiment=experiment,
map_metrics=map_metrics,
data=data, # pyre-ignore
early_stopping_strategy=early_stopping_strategy,
by_walltime=by_walltime,
limit_points_per_plot=limit_points_per_plot,
)
)
return [plot for plot in output_plot_list if plot is not None]
def _transform_progression_to_walltime(
progressions: np.ndarray, exp_df: pd.DataFrame, trial_idx: int
) -> Optional[np.ndarray]:
try:
trial_df = exp_df[exp_df["trial_index"] == trial_idx]
time_run_started = trial_df["time_run_started"].iloc[0]
time_completed = trial_df["time_completed"].iloc[0]
runtime_seconds = (time_completed - time_run_started).total_seconds()
intermediate_times = runtime_seconds * progressions / progressions.max()
transformed_times = np.array(
[time_run_started + timedelta(seconds=t) for t in intermediate_times]
)
return transformed_times
except Exception as e:
logger.info(f"Failed to transform progression to walltime: {e}")
return None
def _get_curve_plot_dropdown(
experiment: Experiment,
map_metrics: Iterable[MapMetric],
data: MapData,
early_stopping_strategy: Optional[BaseEarlyStoppingStrategy],
by_walltime: bool = False,
limit_points_per_plot: Optional[int] = None,
) -> Optional[go.Figure]:
"""Plot curve metrics by either progression or walltime.
Args:
experiment: The experiment to generate plots for.
map_metrics: The list of metrics to generate plots for. Each metric
will be one entry in the dropdown.
data: The map data used to generate the plots.
early_stopping_strategy: An instance of ``BaseEarlyStoppingStrategy``. This
is used to check which metrics are being used for early stopping.
by_walltime: If true, the x-axis will be walltime. If false, the x-axis is
the progression of the trials (trials are 'stacked').
limit_points_per_plot: Limit the total number of data points used per plot
(i.e., per metric). This is passed down to `MapData.subsample(...)` to
subsample the data. Useful for keeping the plots of manageable size.
"""
early_stopping_metrics = get_early_stopping_metrics(
experiment=experiment, early_stopping_strategy=early_stopping_strategy
)
xs_by_metric = {}
ys_by_metric = {}
legend_labels_by_metric = {}
stopping_markers_by_metric = {}
exp_df = pd.DataFrame()
if by_walltime:
exp_df = exp_to_df(
exp=experiment,
trial_attribute_fields=["time_run_started", "time_completed"],
always_include_field_columns=True,
)
for m in map_metrics:
map_key = m.map_key_info.key
subsampled_data = (
data
if limit_points_per_plot is None
else data.subsample(
limit_rows_per_metric=limit_points_per_plot, map_key=map_key
)
)
map_df = subsampled_data.map_df
metric_df = map_df[map_df["metric_name"] == m.name]
xs, ys, legend_labels, plot_stopping_markers = [], [], [], []
is_early_stopping_metric = m.name in early_stopping_metrics
for trial_idx, df_g in metric_df.groupby("trial_index"):
if experiment.trials[trial_idx].status not in (
TrialStatus.COMPLETED,
TrialStatus.EARLY_STOPPED,
):
continue
if by_walltime:
x = _transform_progression_to_walltime(
progressions=df_g[map_key].to_numpy(),
exp_df=exp_df,
trial_idx=trial_idx,
)
if x is None:
continue
else:
x = df_g[map_key].to_numpy()
xs.append(x)
ys.append(df_g["mean"].to_numpy())
legend_labels.append(f"Trial {trial_idx}")
plot_stopping_markers.append(
is_early_stopping_metric
and experiment.trials[trial_idx].status == TrialStatus.EARLY_STOPPED
)
if len(xs) > 0:
xs_by_metric[m.name] = xs
ys_by_metric[m.name] = ys
legend_labels_by_metric[m.name] = legend_labels
stopping_markers_by_metric[m.name] = plot_stopping_markers
if len(xs_by_metric.keys()) == 0:
return None
title = (
"Curve metrics (i.e., learning curves) by walltime"
if by_walltime
else "Curve metrics (i.e., learning curves) by progression"
)
return map_data_multiple_metrics_dropdown_plotly(
metric_names=[m.name for m in map_metrics],
xs_by_metric=xs_by_metric,
ys_by_metric=ys_by_metric,
legend_labels_by_metric=legend_labels_by_metric,
stopping_markers_by_metric=stopping_markers_by_metric,
title=title,
xlabels_by_metric={
m.name: "wall time" if by_walltime else m.map_key_info.key
for m in map_metrics
},
lower_is_better_by_metric={m.name: m.lower_is_better for m in map_metrics},
)
def _merge_trials_dict_with_df(
df: pd.DataFrame,
# pyre-fixme[2]: Parameter annotation cannot contain `Any`.
trials_dict: Dict[int, Any],
column_name: str,
always_include_field_column: bool = False,
) -> None:
"""Add a column ``column_name`` to a DataFrame ``df`` containing a column
``trial_index``. Each value of the new column is given by the element of
``trials_dict`` indexed by ``trial_index``.
Args:
df: Pandas DataFrame with column ``trial_index``, to be appended with a new
column.
trials_dict: Dict mapping each ``trial_index`` to a value. The new column of
df will be populated with the value corresponding with the
``trial_index`` of each row.
column_name: Name of the column to be appended to ``df``.
always_include_field_column: Even if all trials have missing values,
include the column.
"""
if "trial_index" not in df.columns:
raise ValueError("df must have trial_index column")
# field present for some trial
if always_include_field_column or any(trials_dict.values()):
if not all(
v is not None for v in trials_dict.values()
): # not present for all trials
logger.warning(
f"Column {column_name} missing for some trials. "
"Filling with None when missing."
)
df[column_name] = [trials_dict[trial_index] for trial_index in df.trial_index]
else:
logger.warning(
f"Column {column_name} missing for all trials. " "Not appending column."
)
def _get_generation_method_str(trial: BaseTrial) -> str:
trial_generation_property = trial._properties.get("generation_model_key")
if trial_generation_property is not None:
return trial_generation_property
generation_methods = {
not_none(generator_run._model_key)
for generator_run in trial.generator_runs
if generator_run._model_key is not None
}
# add "Manual" if any generator_runs are manual
if any(
generator_run.generator_run_type == GeneratorRunType.MANUAL.name
for generator_run in trial.generator_runs
):
generation_methods.add("Manual")
return ", ".join(generation_methods) if generation_methods else "Unknown"
def _merge_results_if_no_duplicates(
arms_df: pd.DataFrame,
results: pd.DataFrame,
key_components: List[str],
metrics: List[Metric],
) -> DataFrame:
"""Formats ``data.df`` and merges it with ``arms_df`` if all of the following are
True:
- ``data.df`` is not empty
- ``data.df`` contains columns corresponding to ``key_components``
- after any formatting, ``data.df`` contains no duplicates of the column
``results_key_col``
"""
if len(results.index) == 0:
logger.info(
f"No results present for the specified metrics `{metrics}`. "
"Returning arm parameters and metadata only."
)
return arms_df
if not all(col in results.columns for col in key_components):
logger.warning(
f"At least one of key columns `{key_components}` not present in results df "
f"`{results}`. Returning arm parameters and metadata only."
)
return arms_df
# prepare results for merge
key_vals = results[key_components[0]].astype("str")
for key_component in key_components[1:]:
key_vals += results[key_component].astype("str")
results_key_col = "-".join(key_components)
results[results_key_col] = key_vals
# Don't return results if duplicates remain
if any(results.duplicated(subset=[results_key_col, "metric_name"])):
logger.warning(
"Experimental results dataframe contains multiple rows with the same "
f"keys {results_key_col}. Returning dataframe without results."
)
return arms_df
metric_vals = results.pivot(
index=results_key_col, columns="metric_name", values="mean"
).reset_index()
# dedupe results by key_components
metadata_cols = key_components + [results_key_col]
if FEASIBLE_COL_NAME in results.columns:
metadata_cols.append(FEASIBLE_COL_NAME)
metadata = results[metadata_cols].drop_duplicates()
metrics_df = pd.merge(metric_vals, metadata, on=results_key_col)
# drop synthetic key column
metrics_df = metrics_df.drop(results_key_col, axis=1)
# merge and return
return pd.merge(metrics_df, arms_df, on=key_components, how="outer")
[docs]def exp_to_df(
exp: Experiment,
metrics: Optional[List[Metric]] = None,
run_metadata_fields: Optional[List[str]] = None,
trial_properties_fields: Optional[List[str]] = None,
trial_attribute_fields: Optional[List[str]] = None,
additional_fields_callables: Optional[
Dict[str, Callable[[Experiment], Dict[int, Union[str, float]]]]
] = None,
always_include_field_columns: bool = False,
**kwargs: Any,
) -> pd.DataFrame:
"""Transforms an experiment to a DataFrame with rows keyed by trial_index
and arm_name, metrics pivoted into one row. If the pivot results in more than
one row per arm (or one row per ``arm * map_keys`` combination if ``map_keys`` are
present), results are omitted and warning is produced. Only supports
``Experiment``.
Transforms an ``Experiment`` into a ``pd.DataFrame``.
Args:
exp: An ``Experiment`` that may have pending trials.
metrics: Override list of metrics to return. Return all metrics if ``None``.
run_metadata_fields: Fields to extract from ``trial.run_metadata`` for trial
in ``experiment.trials``. If there are multiple arms per trial, these
fields will be replicated across the arms of a trial.
trial_properties_fields: Fields to extract from ``trial._properties`` for trial
in ``experiment.trials``. If there are multiple arms per trial, these
fields will be replicated across the arms of a trial. Output columns names
will be prepended with ``"trial_properties_"``.
trial_attribute_fields: Fields to extract from trial attributes for each trial
in ``experiment.trials``. If there are multiple arms per trial, these
fields will be replicated across the arms of a trial.
additional_fields_callables: A dictionary of field names to callables, with
each being a function from `experiment` to a `trials_dict` of the form
{trial_index: value}. An example of a custom callable like this is the
function `compute_maximum_map_values`.
always_include_field_columns: If `True`, even if all trials have missing
values, include field columns anyway. Such columns are by default
omitted (False).
Returns:
DataFrame: A dataframe of inputs, metadata and metrics by trial and arm (and
``map_keys``, if present). If no trials are available, returns an empty
dataframe. If no metric ouputs are available, returns a dataframe of inputs and
metadata.
"""
if len(kwargs) > 0:
logger.warn(
"`kwargs` in exp_to_df is deprecated. Please remove extra arguments."
)
# Accept Experiment and SimpleExperiment
if isinstance(exp, MultiTypeExperiment):
raise ValueError("Cannot transform MultiTypeExperiments to DataFrames.")
key_components = ["trial_index", "arm_name"]
# Get each trial-arm with parameters
arms_df = pd.DataFrame(
[
{
"arm_name": arm.name,
"trial_index": trial_index,
**arm.parameters,
}
for trial_index, trial in exp.trials.items()
for arm in trial.arms
]
)
# Fetch results.
data = exp.lookup_data()
results = data.df
# Filter metrics.
if metrics is not None:
metric_names = [m.name for m in metrics]
results = results[results["metric_name"].isin(metric_names)]
# Add `FEASIBLE_COL_NAME` column according to constraints if any.
if (
exp.optimization_config is not None
and len(not_none(exp.optimization_config).all_constraints) > 0
):
optimization_config = not_none(exp.optimization_config)
try:
if any(oc.relative for oc in optimization_config.all_constraints):
optimization_config = _derel_opt_config_wrapper(
optimization_config=optimization_config,
experiment=exp,
)
results[FEASIBLE_COL_NAME] = _is_row_feasible(
df=results,
optimization_config=optimization_config,
)
except (KeyError, ValueError) as e:
logger.warning(f"Feasibility calculation failed with error: {e}")
# If arms_df is empty, return empty results (legacy behavior)
if len(arms_df.index) == 0:
if len(results.index) != 0:
raise ValueError(
"exp.lookup_data().df returned more rows than there are experimental "
"arms. This is an inconsistent experimental state. Please report to "
"Ax support."
)
return results
# Create key column from key_components
arms_df["trial_index"] = arms_df["trial_index"].astype(int)
# Add trial status
trials = exp.trials.items()
trial_to_status = {index: trial.status.name for index, trial in trials}
_merge_trials_dict_with_df(
df=arms_df, trials_dict=trial_to_status, column_name="trial_status"
)
# Add generation_method, accounting for the generic case that generator_runs is of
# arbitrary length. Repeated methods within a trial are condensed via `set` and an
# empty set will yield "Unknown" as the method.
trial_to_generation_method = {
trial_index: _get_generation_method_str(trial) for trial_index, trial in trials
}
_merge_trials_dict_with_df(
df=arms_df,
trials_dict=trial_to_generation_method,
column_name="generation_method",
)
# Add any trial properties fields to arms_df
if trial_properties_fields is not None:
# add trial._properties fields
for field in trial_properties_fields:
trial_to_properties_field = {
trial_index: (
trial._properties[field] if field in trial._properties else None
)
for trial_index, trial in trials
}
_merge_trials_dict_with_df(
df=arms_df,
trials_dict=trial_to_properties_field,
column_name="trial_properties_" + field,
always_include_field_column=always_include_field_columns,
)
# Add any run_metadata fields to arms_df
if run_metadata_fields is not None:
# add run_metadata fields
for field in run_metadata_fields:
trial_to_metadata_field = {
trial_index: (
trial.run_metadata[field] if field in trial.run_metadata else None
)
for trial_index, trial in trials
}
_merge_trials_dict_with_df(
df=arms_df,
trials_dict=trial_to_metadata_field,
column_name=field,
always_include_field_column=always_include_field_columns,
)
# Add any trial attributes fields to arms_df
if trial_attribute_fields is not None:
# add trial attribute fields
for field in trial_attribute_fields:
trial_to_attribute_field = {
trial_index: (getattr(trial, field) if hasattr(trial, field) else None)
for trial_index, trial in trials
}
_merge_trials_dict_with_df(
df=arms_df,
trials_dict=trial_to_attribute_field,
column_name=field,
always_include_field_column=always_include_field_columns,
)
# Add additional fields to arms_df
if additional_fields_callables is not None:
for field, func in additional_fields_callables.items():
trial_to_additional_field = func(exp)
_merge_trials_dict_with_df(
df=arms_df,
trials_dict=trial_to_additional_field,
column_name=field,
always_include_field_column=always_include_field_columns,
)
exp_df = _merge_results_if_no_duplicates(
arms_df=arms_df,
results=results,
key_components=key_components,
metrics=metrics or list(exp.metrics.values()),
)
exp_df = not_none(not_none(exp_df).sort_values(["trial_index"]))
initial_column_order = (
["trial_index", "arm_name", "trial_status", "generation_method"]
+ (run_metadata_fields or [])
+ (trial_properties_fields or [])
)
for column_name in reversed(initial_column_order):
if column_name in exp_df.columns:
# pyre-ignore[6]: In call `DataFrame.insert`, for 3rd positional argument,
# expected `Union[int, Series, Variable[ArrayLike <: [ExtensionArray,
# ndarray]]]` but got `Union[DataFrame, Series]`]
exp_df.insert(0, column_name, exp_df.pop(column_name))
return exp_df.reset_index(drop=True)
[docs]def compute_maximum_map_values(
experiment: Experiment, map_key: Optional[str] = None
) -> Dict[int, float]:
"""A function that returns a map from trial_index to the maximum map value
reached. If map_key is not specified, it uses the first map_key."""
data = experiment.lookup_data()
if not isinstance(data, MapData):
raise ValueError("`compute_maximum_map_values` requires `MapData`.")
if map_key is None:
map_key = data.map_keys[0]
map_df = data.map_df
maximum_map_value_df = (
map_df[["trial_index"] + data.map_keys]
.groupby("trial_index")
.max()
.reset_index()
)
trials_dict = {}
for trial_index in experiment.trials:
value = None
if trial_index in maximum_map_value_df["trial_index"].values:
value = maximum_map_value_df[
maximum_map_value_df["trial_index"] == trial_index
][map_key].iloc[0]
trials_dict[trial_index] = value
return trials_dict
def _pairwise_pareto_plotly_scatter(
experiment: Experiment,
metric_names: Optional[Tuple[str, str]] = None,
reference_point: Optional[Tuple[float, float]] = None,
minimize: Optional[Union[bool, Tuple[bool, bool]]] = None,
) -> Iterable[go.Figure]:
metric_name_pairs = _get_metric_name_pairs(experiment=experiment)
return [
_pareto_frontier_scatter_2d_plotly(
experiment=experiment,
metric_names=metric_name_pair,
)
for metric_name_pair in metric_name_pairs
]
def _get_metric_name_pairs(
experiment: Experiment, use_first_n_metrics: int = 4
) -> Iterable[Tuple[str, str]]:
optimization_config = _validate_experiment_and_get_optimization_config(
experiment=experiment
)
if not_none(optimization_config).is_moo_problem:
multi_objective = checked_cast(
MultiObjective, not_none(optimization_config).objective
)
metric_names = [obj.metric.name for obj in multi_objective.objectives]
if len(metric_names) > use_first_n_metrics:
logger.warning(
f"Got `metric_names = {metric_names}` of length {len(metric_names)}. "
f"Creating pairwise Pareto plots for the first `use_n_metrics = "
f"{use_first_n_metrics}` of these and disregarding the remainder."
)
metric_names = metric_names[:use_first_n_metrics]
metric_name_pairs = itertools.combinations(metric_names, 2)
return metric_name_pairs
raise UserInputError(
"Inference of `metric_names` failed. Expected `MultiObjective` but "
f"got {not_none(optimization_config).objective}. Please provide an experiment "
"with a MultiObjective `optimization_config`."
)
def _pareto_frontier_scatter_2d_plotly(
experiment: Experiment,
metric_names: Optional[Tuple[str, str]] = None,
reference_point: Optional[Tuple[float, float]] = None,
minimize: Optional[Union[bool, Tuple[bool, bool]]] = None,
) -> go.Figure:
# Determine defaults for unspecified inputs using `optimization_config`
metric_names, reference_point, minimize = _pareto_frontier_plot_input_processing(
experiment=experiment,
metric_names=metric_names,
reference_point=reference_point,
minimize=minimize,
)
df = exp_to_df(experiment)
Y = df[list(metric_names)].to_numpy()
Y_pareto = (
_extract_observed_pareto_2d(
Y=Y, reference_point=reference_point, minimize=minimize
)
if minimize is not None
else None
)
hovertext = [f"Arm name: {arm_name}" for arm_name in df["arm_name"]]
return scatter_plot_with_pareto_frontier_plotly(
Y=Y,
Y_pareto=Y_pareto,
metric_x=metric_names[0],
metric_y=metric_names[1],
reference_point=reference_point,
minimize=minimize,
hovertext=hovertext,
)
def _objective_vs_true_objective_scatter(
model: ModelBridge,
objective_metric_name: str,
true_objective_metric_name: str,
) -> go.Figure:
plot = plot_multiple_metrics(
model=model,
metric_x=objective_metric_name,
metric_y=true_objective_metric_name,
rel_x=False,
rel_y=False,
)
fig = go.Figure(plot.data)
fig.layout.title.text = (
f"Objective {objective_metric_name} vs. True Objective "
f"Metric {true_objective_metric_name}"
)
return fig
# TODO: may want to have a way to do this with a plot_fn
# that returns a list of plots, such as get_standard_plots
def _warn_and_create_warning_plot(warning_msg: str) -> go.Figure:
logger.warning(warning_msg)
return (
go.Figure()
.add_annotation(text=warning_msg, showarrow=False, font={"size": 20})
.update_xaxes(showgrid=False, showticklabels=False, zeroline=False)
.update_yaxes(showgrid=False, showticklabels=False, zeroline=False)
)