Source code for ax.service.utils.report_utils

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import itertools
import logging
from collections import defaultdict
from datetime import timedelta
from logging import Logger
from typing import (
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Optional,
    Tuple,
    TYPE_CHECKING,
    Union,
)

import gpytorch

import numpy as np
import pandas as pd
import plotly.graph_objects as go
from ax.core.base_trial import TrialStatus
from ax.core.data import Data
from ax.core.experiment import Experiment
from ax.core.generator_run import GeneratorRunType
from ax.core.map_data import MapData
from ax.core.map_metric import MapMetric
from ax.core.metric import Metric
from ax.core.multi_type_experiment import MultiTypeExperiment
from ax.core.objective import MultiObjective, ScalarizedObjective
from ax.core.trial import BaseTrial
from ax.early_stopping.strategies.base import BaseEarlyStoppingStrategy
from ax.exceptions.core import UserInputError
from ax.modelbridge import ModelBridge
from ax.modelbridge.cross_validation import cross_validate
from ax.modelbridge.torch import TorchModelBridge
from ax.plot.contour import interact_contour_plotly
from ax.plot.diagnostic import interact_cross_validation_plotly
from ax.plot.feature_importances import plot_feature_importance_by_feature_plotly
from ax.plot.helper import get_range_parameters_from_list
from ax.plot.pareto_frontier import (
    _pareto_frontier_plot_input_processing,
    _validate_experiment_and_get_optimization_config,
    scatter_plot_with_hypervolume_trace_plotly,
    scatter_plot_with_pareto_frontier_plotly,
)
from ax.plot.pareto_utils import _extract_observed_pareto_2d
from ax.plot.scatter import interact_fitted_plotly, plot_multiple_metrics
from ax.plot.slice import interact_slice_plotly
from ax.plot.trace import (
    map_data_multiple_metrics_dropdown_plotly,
    optimization_trace_single_method_plotly,
)
from ax.service.utils.best_point import _derel_opt_config_wrapper, _is_row_feasible
from ax.service.utils.early_stopping import get_early_stopping_metrics
from ax.utils.common.logger import get_logger
from ax.utils.common.typeutils import checked_cast, not_none
from ax.utils.sensitivity.sobol_measures import ax_parameter_sens
from pandas.core.frame import DataFrame

if TYPE_CHECKING:
    from ax.service.scheduler import Scheduler


logger: Logger = get_logger(__name__)
FEATURE_IMPORTANCE_CAPTION = (
    "<b>NOTE:</b> This plot is intended for advanced users. Specifically,<br>"
    "it is a measure of sensitivity/smoothness, so parameters of<br>"
    "relatively low importance may still be important to tune."
)
CROSS_VALIDATION_CAPTION = (
    "<b>NOTE:</b> We have tried our best to only plot the region of interest.<br>"
    "This may hide outliers. You can autoscale the axes to see all trials."
)
FEASIBLE_COL_NAME = "is_feasible"


# pyre-ignore[11]: Annotation `go.Figure` is not defined as a type.
def _get_cross_validation_plots(model: ModelBridge) -> List[go.Figure]:
    cv = cross_validate(model=model)
    return [
        interact_cross_validation_plotly(
            cv_results=cv, caption=CROSS_VALIDATION_CAPTION
        )
    ]


def _get_objective_trace_plot(
    experiment: Experiment,
    data: Data,
    model_transitions: List[int],
    true_objective_metric_name: Optional[str] = None,
) -> Iterable[go.Figure]:
    if experiment.is_moo_problem:
        return [
            scatter_plot_with_hypervolume_trace_plotly(experiment=experiment),
            *_pairwise_pareto_plotly_scatter(experiment=experiment),
        ]

    optimization_config = experiment.optimization_config
    if optimization_config is None:
        return []

    metric_names = (
        metric_name
        for metric_name in [
            optimization_config.objective.metric.name,
            true_objective_metric_name,
        ]
        if metric_name is not None
    )

    plots = [
        optimization_trace_single_method_plotly(
            y=np.array([data.df[data.df["metric_name"] == metric_name]["mean"]]),
            title=f"Best {metric_name} found vs. # of iterations",
            ylabel=metric_name,
            model_transitions=model_transitions,
            # Try and use the metric's lower_is_better property, but fall back on
            # objective's minimize property if relevent
            optimization_direction=(
                (
                    "minimize"
                    if experiment.metrics[metric_name].lower_is_better is True
                    else "maximize"
                )
                if experiment.metrics[metric_name].lower_is_better is not None
                else (
                    "minimize" if optimization_config.objective.minimize else "maximize"
                )
            ),
            plot_trial_points=True,
        )
        for metric_name in metric_names
    ]

    return [plot for plot in plots if plot is not None]


def _get_objective_v_param_plots(
    experiment: Experiment,
    model: ModelBridge,
    max_num_slice_plots: int = 50,
    max_num_contour_plots: int = 20,
) -> List[go.Figure]:
    search_space = experiment.search_space

    range_params = get_range_parameters_from_list(
        list(search_space.range_parameters.values()), min_num_values=5
    )
    if len(range_params) < 1:
        # if search space contains no range params
        logger.warning(
            "`_get_objective_v_param_plot` requires a search space with at least one "
            "`RangeParameter`. Returning an empty list."
        )
        return []
    num_range_params = len(range_params)
    num_metrics = len(experiment.metrics)
    num_slice_plots = num_range_params * num_metrics
    output_plots = []
    if num_slice_plots <= max_num_slice_plots:
        # parameter slice plot
        output_plots += [
            interact_slice_plotly(
                model=model,
            )
        ]
    else:
        warning_msg = (
            f"Skipping creation of {num_slice_plots} slice plots since that "
            f"exceeds <br>`max_num_slice_plots = {max_num_slice_plots}`."
            "<br>Users can plot individual slice plots with the <br>python "
            "function ax.plot.slice.plot_slice_plotly."
        )
        # TODO: return a warning here then convert to a plot/message/etc. downstream.
        warning_plot = _warn_and_create_warning_plot(warning_msg=warning_msg)
        output_plots.append(warning_plot)

    num_contour_plots = num_range_params * (num_range_params - 1) * num_metrics
    if num_range_params > 1 and num_contour_plots <= max_num_contour_plots:
        # contour plots
        try:
            with gpytorch.settings.max_eager_kernel_size(float("inf")):
                output_plots += [
                    interact_contour_plotly(
                        model=not_none(model),
                        metric_name=metric_name,
                    )
                    for metric_name in model.metric_names
                ]
        # `mean shape torch.Size` RunTimeErrors, pending resolution of
        # https://github.com/cornellius-gp/gpytorch/issues/1853
        except RuntimeError as e:
            logger.warning(f"Contour plotting failed with error: {e}.")
    elif num_contour_plots > max_num_contour_plots:
        warning_msg = (
            f"Skipping creation of {num_contour_plots} contour plots since that "
            f"exceeds <br>`max_num_contour_plots = {max_num_contour_plots}`."
            "<br>Users can plot individual contour plots with the <br>python "
            "function ax.plot.contour.plot_contour_plotly."
        )
        # TODO: return a warning here then convert to a plot/message/etc. downstream.
        warning_plot = _warn_and_create_warning_plot(warning_msg=warning_msg)
        output_plots.append(warning_plot)
    return output_plots


def _get_suffix(input_str: str, delim: str = ".", n_chunks: int = 1) -> str:
    return delim.join(input_str.split(delim)[-n_chunks:])


def _get_shortest_unique_suffix_dict(
    input_str_list: List[str], delim: str = "."
) -> Dict[str, str]:
    """Maps a list of strings to their shortest unique suffixes

    Maps all original strings to the smallest number of chunks, as specified by
    delim, that are not a suffix of any other original string. If the original
    string was a suffix of another string, map it to its unaltered self.

    Args:
        input_str_list: a list of strings to create the suffix mapping for
        delim: the delimiter used to split up the strings into meaningful chunks

    Returns:
        dict: A dict with the original strings as keys and their abbreviations as
            values
    """

    # all input strings must be unique
    assert len(input_str_list) == len(set(input_str_list))
    if delim == "":
        raise ValueError("delim must be a non-empty string.")
    suffix_dict = defaultdict(list)
    # initialize suffix_dict with last chunk
    for istr in input_str_list:
        suffix_dict[_get_suffix(istr, delim=delim, n_chunks=1)].append(istr)
    max_chunks = max(len(istr.split(delim)) for istr in input_str_list)
    if max_chunks == 1:
        return {istr: istr for istr in input_str_list}
    # the upper range of this loop is `max_chunks + 2` because:
    #     - `i` needs to take the value of `max_chunks`, hence one +1
    #     - the contents of the loop are run one more time to check if `all_unique`,
    #           hence the other +1
    for i in range(2, max_chunks + 2):
        new_dict = defaultdict(list)
        all_unique = True
        for suffix, suffix_str_list in suffix_dict.items():
            if len(suffix_str_list) > 1:
                all_unique = False
                for istr in suffix_str_list:
                    new_dict[_get_suffix(istr, delim=delim, n_chunks=i)].append(istr)
            else:
                new_dict[suffix] = suffix_str_list
        if all_unique:
            if len(set(input_str_list)) != len(suffix_dict.keys()):
                break
            return {
                suffix_str_list[0]: suffix
                for suffix, suffix_str_list in suffix_dict.items()
            }
        suffix_dict = new_dict
    # If this function has not yet exited, some input strings still share a suffix.
    # This is not expected, but in this case, the function will return the identity
    # mapping, i.e., a dict with the original strings as both keys and values.
    logger.warning(
        "Something went wrong. Returning dictionary with original strings as keys and "
        "values."
    )
    return {istr: istr for istr in input_str_list}


[docs]def get_standard_plots( experiment: Experiment, model: Optional[ModelBridge], data: Optional[Data] = None, model_transitions: Optional[List[int]] = None, true_objective_metric_name: Optional[str] = None, early_stopping_strategy: Optional[BaseEarlyStoppingStrategy] = None, limit_points_per_plot: Optional[int] = None, global_sensitivity_analysis: bool = True, ) -> List[go.Figure]: """Extract standard plots for single-objective optimization. Extracts a list of plots from an ``Experiment`` and ``ModelBridge`` of general interest to an Ax user. Currently not supported are - TODO: multi-objective optimization - TODO: ChoiceParameter plots Args: - experiment: The ``Experiment`` from which to obtain standard plots. - model: The ``ModelBridge`` used to suggest trial parameters. - data: If specified, data, to which to fit the model before generating plots. - model_transitions: The arm numbers at which shifts in generation_strategy occur. - true_objective_metric_name: Name of the metric to use as the true objective. - early_stopping_strategy: Early stopping strategy used throughout the experiment; used for visualizing when curves are stopped. - limit_points_per_plot: Limit the number of points used per metric in each curve plot. Passed to `_get_curve_plot_dropdown`. - global_sensitivity_analysis: If True, plot total Variance-based sensitivity analysis for the model parameters. If False, plot sensitivities based on GP kernel lengthscales. Defaults to True. Returns: - a plot of objective value vs. trial index, to show experiment progression - a plot of objective value vs. range parameter values, only included if the model associated with generation_strategy can create predictions. This consists of: - a plot_slice plot if the search space contains one range parameter - an interact_contour plot if the search space contains multiple range parameters """ if ( true_objective_metric_name is not None and true_objective_metric_name not in experiment.metrics.keys() ): raise ValueError( f"true_objective_metric_name='{true_objective_metric_name}' is not present " f"in experiment.metrics={experiment.metrics}. Please add a valid " "true_objective_metric_name or remove the optional parameter to get " "standard plots." ) objective = not_none(experiment.optimization_config).objective if isinstance(objective, ScalarizedObjective): logger.warning( "get_standard_plots does not currently support ScalarizedObjective " "optimization experiments. Returning an empty list." ) return [] if data is None: data = experiment.fetch_data() if data.df.empty: logger.info(f"Experiment {experiment} does not yet have data, nothing to plot.") return [] output_plot_list = [] try: output_plot_list.extend( _get_objective_trace_plot( experiment=experiment, data=data, model_transitions=model_transitions if model_transitions is not None else [], true_objective_metric_name=true_objective_metric_name, ) ) except Exception as e: # Allow model-based plotting to proceed if objective_trace plotting fails. logger.exception(f"Plotting `objective_trace` failed with error {e}") pass # Objective vs. parameter plot requires a `Model`, so add it only if model # is alrady available. In cases where initially custom trials are attached, # model might not yet be set on the generation strategy. if model: # TODO: Check if model can predict in favor of try/catch. try: if true_objective_metric_name is not None: output_plot_list.append( _objective_vs_true_objective_scatter( model=model, objective_metric_name=objective.metric_names[0], true_objective_metric_name=true_objective_metric_name, ) ) output_plot_list.extend( _get_objective_v_param_plots( experiment=experiment, model=model, ) ) output_plot_list.extend(_get_cross_validation_plots(model=model)) # sensitivity plot sens = None importance_measure = "" if global_sensitivity_analysis and isinstance(model, TorchModelBridge): try: sens = ax_parameter_sens(model, order="total") importance_measure = ( '<a href="https://en.wikipedia.org/wiki/Variance-based_' 'sensitivity_analysis">Variance-based sensitivity analysis</a>' ) except Exception as e: logger.info(f"Failed to compute global feature sensitivities: {e}") feature_importance_plot = plot_feature_importance_by_feature_plotly( model=model, # pyre-ignore [6]: In call for argument `sensitivity_values`, # expected `Optional[Dict[str, Dict[str, Union[float, ndarray]]]]` # but got `Dict[str, Dict[str, ndarray]]`. sensitivity_values=sens, relative=False, caption=FEATURE_IMPORTANCE_CAPTION if importance_measure == "" else "", importance_measure=importance_measure, ) feature_importance_plot.layout.title = "[ADVANCED] " + str( # pyre-fixme[16]: go.Figure has no attribute `layout` feature_importance_plot.layout.title.text ) output_plot_list.append(feature_importance_plot) output_plot_list.append(interact_fitted_plotly(model=model, rel=False)) except Exception as e: logger.exception(f"Feature importance plot failed with error: {e}") # Get plots for MapMetrics map_metrics = [m for m in experiment.metrics.values() if isinstance(m, MapMetric)] if map_metrics: # Sort so that objective metrics appear first map_metrics.sort( key=lambda e: e.name in [m.name for m in objective.metrics], reverse=True, ) for by_walltime in [False, True]: output_plot_list.append( _get_curve_plot_dropdown( experiment=experiment, map_metrics=map_metrics, data=data, # pyre-ignore early_stopping_strategy=early_stopping_strategy, by_walltime=by_walltime, limit_points_per_plot=limit_points_per_plot, ) ) return [plot for plot in output_plot_list if plot is not None]
def _transform_progression_to_walltime( progressions: np.ndarray, exp_df: pd.DataFrame, trial_idx: int ) -> Optional[np.ndarray]: try: trial_df = exp_df[exp_df["trial_index"] == trial_idx] time_run_started = trial_df["time_run_started"].iloc[0] time_completed = trial_df["time_completed"].iloc[0] runtime_seconds = (time_completed - time_run_started).total_seconds() intermediate_times = runtime_seconds * progressions / progressions.max() transformed_times = np.array( [time_run_started + timedelta(seconds=t) for t in intermediate_times] ) return transformed_times except Exception as e: logger.info(f"Failed to transform progression to walltime: {e}") return None def _get_curve_plot_dropdown( experiment: Experiment, map_metrics: Iterable[MapMetric], data: MapData, early_stopping_strategy: Optional[BaseEarlyStoppingStrategy], by_walltime: bool = False, limit_points_per_plot: Optional[int] = None, ) -> Optional[go.Figure]: """Plot curve metrics by either progression or walltime. Args: experiment: The experiment to generate plots for. map_metrics: The list of metrics to generate plots for. Each metric will be one entry in the dropdown. data: The map data used to generate the plots. early_stopping_strategy: An instance of ``BaseEarlyStoppingStrategy``. This is used to check which metrics are being used for early stopping. by_walltime: If true, the x-axis will be walltime. If false, the x-axis is the progression of the trials (trials are 'stacked'). limit_points_per_plot: Limit the total number of data points used per plot (i.e., per metric). This is passed down to `MapData.subsample(...)` to subsample the data. Useful for keeping the plots of manageable size. """ early_stopping_metrics = get_early_stopping_metrics( experiment=experiment, early_stopping_strategy=early_stopping_strategy ) xs_by_metric = {} ys_by_metric = {} legend_labels_by_metric = {} stopping_markers_by_metric = {} exp_df = pd.DataFrame() if by_walltime: exp_df = exp_to_df( exp=experiment, trial_attribute_fields=["time_run_started", "time_completed"], always_include_field_columns=True, ) for m in map_metrics: map_key = m.map_key_info.key subsampled_data = ( data if limit_points_per_plot is None else data.subsample( limit_rows_per_metric=limit_points_per_plot, map_key=map_key ) ) map_df = subsampled_data.map_df metric_df = map_df[map_df["metric_name"] == m.name] xs, ys, legend_labels, plot_stopping_markers = [], [], [], [] is_early_stopping_metric = m.name in early_stopping_metrics for trial_idx, df_g in metric_df.groupby("trial_index"): if experiment.trials[trial_idx].status not in ( TrialStatus.COMPLETED, TrialStatus.EARLY_STOPPED, ): continue if by_walltime: x = _transform_progression_to_walltime( progressions=df_g[map_key].to_numpy(), exp_df=exp_df, trial_idx=trial_idx, ) if x is None: continue else: x = df_g[map_key].to_numpy() xs.append(x) ys.append(df_g["mean"].to_numpy()) legend_labels.append(f"Trial {trial_idx}") plot_stopping_markers.append( is_early_stopping_metric and experiment.trials[trial_idx].status == TrialStatus.EARLY_STOPPED ) if len(xs) > 0: xs_by_metric[m.name] = xs ys_by_metric[m.name] = ys legend_labels_by_metric[m.name] = legend_labels stopping_markers_by_metric[m.name] = plot_stopping_markers if len(xs_by_metric.keys()) == 0: return None title = ( "Curve metrics (i.e., learning curves) by walltime" if by_walltime else "Curve metrics (i.e., learning curves) by progression" ) return map_data_multiple_metrics_dropdown_plotly( metric_names=[m.name for m in map_metrics], xs_by_metric=xs_by_metric, ys_by_metric=ys_by_metric, legend_labels_by_metric=legend_labels_by_metric, stopping_markers_by_metric=stopping_markers_by_metric, title=title, xlabels_by_metric={ m.name: "wall time" if by_walltime else m.map_key_info.key for m in map_metrics }, lower_is_better_by_metric={m.name: m.lower_is_better for m in map_metrics}, ) def _merge_trials_dict_with_df( df: pd.DataFrame, # pyre-fixme[2]: Parameter annotation cannot contain `Any`. trials_dict: Dict[int, Any], column_name: str, always_include_field_column: bool = False, ) -> None: """Add a column ``column_name`` to a DataFrame ``df`` containing a column ``trial_index``. Each value of the new column is given by the element of ``trials_dict`` indexed by ``trial_index``. Args: df: Pandas DataFrame with column ``trial_index``, to be appended with a new column. trials_dict: Dict mapping each ``trial_index`` to a value. The new column of df will be populated with the value corresponding with the ``trial_index`` of each row. column_name: Name of the column to be appended to ``df``. always_include_field_column: Even if all trials have missing values, include the column. """ if "trial_index" not in df.columns: raise ValueError("df must have trial_index column") # field present for some trial if always_include_field_column or any(trials_dict.values()): if not all( v is not None for v in trials_dict.values() ): # not present for all trials logger.warning( f"Column {column_name} missing for some trials. " "Filling with None when missing." ) df[column_name] = [trials_dict[trial_index] for trial_index in df.trial_index] else: logger.warning( f"Column {column_name} missing for all trials. " "Not appending column." ) def _get_generation_method_str(trial: BaseTrial) -> str: trial_generation_property = trial._properties.get("generation_model_key") if trial_generation_property is not None: return trial_generation_property generation_methods = { not_none(generator_run._model_key) for generator_run in trial.generator_runs if generator_run._model_key is not None } # add "Manual" if any generator_runs are manual if any( generator_run.generator_run_type == GeneratorRunType.MANUAL.name for generator_run in trial.generator_runs ): generation_methods.add("Manual") return ", ".join(generation_methods) if generation_methods else "Unknown" def _merge_results_if_no_duplicates( arms_df: pd.DataFrame, results: pd.DataFrame, key_components: List[str], metrics: List[Metric], ) -> DataFrame: """Formats ``data.df`` and merges it with ``arms_df`` if all of the following are True: - ``data.df`` is not empty - ``data.df`` contains columns corresponding to ``key_components`` - after any formatting, ``data.df`` contains no duplicates of the column ``results_key_col`` """ if len(results.index) == 0: logger.info( f"No results present for the specified metrics `{metrics}`. " "Returning arm parameters and metadata only." ) return arms_df if not all(col in results.columns for col in key_components): logger.warning( f"At least one of key columns `{key_components}` not present in results df " f"`{results}`. Returning arm parameters and metadata only." ) return arms_df # prepare results for merge key_vals = results[key_components[0]].astype("str") for key_component in key_components[1:]: key_vals += results[key_component].astype("str") results_key_col = "-".join(key_components) results[results_key_col] = key_vals # Don't return results if duplicates remain if any(results.duplicated(subset=[results_key_col, "metric_name"])): logger.warning( "Experimental results dataframe contains multiple rows with the same " f"keys {results_key_col}. Returning dataframe without results." ) return arms_df metric_vals = results.pivot( index=results_key_col, columns="metric_name", values="mean" ).reset_index() # dedupe results by key_components metadata_cols = key_components + [results_key_col] if FEASIBLE_COL_NAME in results.columns: metadata_cols.append(FEASIBLE_COL_NAME) metadata = results[metadata_cols].drop_duplicates() metrics_df = pd.merge(metric_vals, metadata, on=results_key_col) # drop synthetic key column metrics_df = metrics_df.drop(results_key_col, axis=1) # merge and return return pd.merge(metrics_df, arms_df, on=key_components, how="outer")
[docs]def exp_to_df( exp: Experiment, metrics: Optional[List[Metric]] = None, run_metadata_fields: Optional[List[str]] = None, trial_properties_fields: Optional[List[str]] = None, trial_attribute_fields: Optional[List[str]] = None, additional_fields_callables: Optional[ Dict[str, Callable[[Experiment], Dict[int, Union[str, float]]]] ] = None, always_include_field_columns: bool = False, **kwargs: Any, ) -> pd.DataFrame: """Transforms an experiment to a DataFrame with rows keyed by trial_index and arm_name, metrics pivoted into one row. If the pivot results in more than one row per arm (or one row per ``arm * map_keys`` combination if ``map_keys`` are present), results are omitted and warning is produced. Only supports ``Experiment``. Transforms an ``Experiment`` into a ``pd.DataFrame``. Args: exp: An ``Experiment`` that may have pending trials. metrics: Override list of metrics to return. Return all metrics if ``None``. run_metadata_fields: Fields to extract from ``trial.run_metadata`` for trial in ``experiment.trials``. If there are multiple arms per trial, these fields will be replicated across the arms of a trial. trial_properties_fields: Fields to extract from ``trial._properties`` for trial in ``experiment.trials``. If there are multiple arms per trial, these fields will be replicated across the arms of a trial. Output columns names will be prepended with ``"trial_properties_"``. trial_attribute_fields: Fields to extract from trial attributes for each trial in ``experiment.trials``. If there are multiple arms per trial, these fields will be replicated across the arms of a trial. additional_fields_callables: A dictionary of field names to callables, with each being a function from `experiment` to a `trials_dict` of the form {trial_index: value}. An example of a custom callable like this is the function `compute_maximum_map_values`. always_include_field_columns: If `True`, even if all trials have missing values, include field columns anyway. Such columns are by default omitted (False). Returns: DataFrame: A dataframe of inputs, metadata and metrics by trial and arm (and ``map_keys``, if present). If no trials are available, returns an empty dataframe. If no metric ouputs are available, returns a dataframe of inputs and metadata. """ if len(kwargs) > 0: logger.warn( "`kwargs` in exp_to_df is deprecated. Please remove extra arguments." ) # Accept Experiment and SimpleExperiment if isinstance(exp, MultiTypeExperiment): raise ValueError("Cannot transform MultiTypeExperiments to DataFrames.") key_components = ["trial_index", "arm_name"] # Get each trial-arm with parameters arms_df = pd.DataFrame( [ { "arm_name": arm.name, "trial_index": trial_index, **arm.parameters, } for trial_index, trial in exp.trials.items() for arm in trial.arms ] ) # Fetch results. data = exp.lookup_data() results = data.df # Filter metrics. if metrics is not None: metric_names = [m.name for m in metrics] results = results[results["metric_name"].isin(metric_names)] # Add `FEASIBLE_COL_NAME` column according to constraints if any. if ( exp.optimization_config is not None and len(not_none(exp.optimization_config).all_constraints) > 0 ): optimization_config = not_none(exp.optimization_config) try: if any(oc.relative for oc in optimization_config.all_constraints): optimization_config = _derel_opt_config_wrapper( optimization_config=optimization_config, experiment=exp, ) results[FEASIBLE_COL_NAME] = _is_row_feasible( df=results, optimization_config=optimization_config, ) except (KeyError, ValueError) as e: logger.warning(f"Feasibility calculation failed with error: {e}") # If arms_df is empty, return empty results (legacy behavior) if len(arms_df.index) == 0: if len(results.index) != 0: raise ValueError( "exp.lookup_data().df returned more rows than there are experimental " "arms. This is an inconsistent experimental state. Please report to " "Ax support." ) return results # Create key column from key_components arms_df["trial_index"] = arms_df["trial_index"].astype(int) # Add trial status trials = exp.trials.items() trial_to_status = {index: trial.status.name for index, trial in trials} _merge_trials_dict_with_df( df=arms_df, trials_dict=trial_to_status, column_name="trial_status" ) # Add generation_method, accounting for the generic case that generator_runs is of # arbitrary length. Repeated methods within a trial are condensed via `set` and an # empty set will yield "Unknown" as the method. trial_to_generation_method = { trial_index: _get_generation_method_str(trial) for trial_index, trial in trials } _merge_trials_dict_with_df( df=arms_df, trials_dict=trial_to_generation_method, column_name="generation_method", ) # Add any trial properties fields to arms_df if trial_properties_fields is not None: # add trial._properties fields for field in trial_properties_fields: trial_to_properties_field = { trial_index: ( trial._properties[field] if field in trial._properties else None ) for trial_index, trial in trials } _merge_trials_dict_with_df( df=arms_df, trials_dict=trial_to_properties_field, column_name="trial_properties_" + field, always_include_field_column=always_include_field_columns, ) # Add any run_metadata fields to arms_df if run_metadata_fields is not None: # add run_metadata fields for field in run_metadata_fields: trial_to_metadata_field = { trial_index: ( trial.run_metadata[field] if field in trial.run_metadata else None ) for trial_index, trial in trials } _merge_trials_dict_with_df( df=arms_df, trials_dict=trial_to_metadata_field, column_name=field, always_include_field_column=always_include_field_columns, ) # Add any trial attributes fields to arms_df if trial_attribute_fields is not None: # add trial attribute fields for field in trial_attribute_fields: trial_to_attribute_field = { trial_index: (getattr(trial, field) if hasattr(trial, field) else None) for trial_index, trial in trials } _merge_trials_dict_with_df( df=arms_df, trials_dict=trial_to_attribute_field, column_name=field, always_include_field_column=always_include_field_columns, ) # Add additional fields to arms_df if additional_fields_callables is not None: for field, func in additional_fields_callables.items(): trial_to_additional_field = func(exp) _merge_trials_dict_with_df( df=arms_df, trials_dict=trial_to_additional_field, column_name=field, always_include_field_column=always_include_field_columns, ) exp_df = _merge_results_if_no_duplicates( arms_df=arms_df, results=results, key_components=key_components, metrics=metrics or list(exp.metrics.values()), ) exp_df = not_none(not_none(exp_df).sort_values(["trial_index"])) initial_column_order = ( ["trial_index", "arm_name", "trial_status", "generation_method"] + (run_metadata_fields or []) + (trial_properties_fields or []) ) for column_name in reversed(initial_column_order): if column_name in exp_df.columns: # pyre-ignore[6]: In call `DataFrame.insert`, for 3rd positional argument, # expected `Union[int, Series, Variable[ArrayLike <: [ExtensionArray, # ndarray]]]` but got `Union[DataFrame, Series]`] exp_df.insert(0, column_name, exp_df.pop(column_name)) return exp_df.reset_index(drop=True)
[docs]def compute_maximum_map_values( experiment: Experiment, map_key: Optional[str] = None ) -> Dict[int, float]: """A function that returns a map from trial_index to the maximum map value reached. If map_key is not specified, it uses the first map_key.""" data = experiment.lookup_data() if not isinstance(data, MapData): raise ValueError("`compute_maximum_map_values` requires `MapData`.") if map_key is None: map_key = data.map_keys[0] map_df = data.map_df maximum_map_value_df = ( map_df[["trial_index"] + data.map_keys] .groupby("trial_index") .max() .reset_index() ) trials_dict = {} for trial_index in experiment.trials: value = None if trial_index in maximum_map_value_df["trial_index"].values: value = maximum_map_value_df[ maximum_map_value_df["trial_index"] == trial_index ][map_key].iloc[0] trials_dict[trial_index] = value return trials_dict
def _pairwise_pareto_plotly_scatter( experiment: Experiment, metric_names: Optional[Tuple[str, str]] = None, reference_point: Optional[Tuple[float, float]] = None, minimize: Optional[Union[bool, Tuple[bool, bool]]] = None, ) -> Iterable[go.Figure]: metric_name_pairs = _get_metric_name_pairs(experiment=experiment) return [ _pareto_frontier_scatter_2d_plotly( experiment=experiment, metric_names=metric_name_pair, ) for metric_name_pair in metric_name_pairs ] def _get_metric_name_pairs( experiment: Experiment, use_first_n_metrics: int = 4 ) -> Iterable[Tuple[str, str]]: optimization_config = _validate_experiment_and_get_optimization_config( experiment=experiment ) if not_none(optimization_config).is_moo_problem: multi_objective = checked_cast( MultiObjective, not_none(optimization_config).objective ) metric_names = [obj.metric.name for obj in multi_objective.objectives] if len(metric_names) > use_first_n_metrics: logger.warning( f"Got `metric_names = {metric_names}` of length {len(metric_names)}. " f"Creating pairwise Pareto plots for the first `use_n_metrics = " f"{use_first_n_metrics}` of these and disregarding the remainder." ) metric_names = metric_names[:use_first_n_metrics] metric_name_pairs = itertools.combinations(metric_names, 2) return metric_name_pairs raise UserInputError( "Inference of `metric_names` failed. Expected `MultiObjective` but " f"got {not_none(optimization_config).objective}. Please provide an experiment " "with a MultiObjective `optimization_config`." ) def _pareto_frontier_scatter_2d_plotly( experiment: Experiment, metric_names: Optional[Tuple[str, str]] = None, reference_point: Optional[Tuple[float, float]] = None, minimize: Optional[Union[bool, Tuple[bool, bool]]] = None, ) -> go.Figure: # Determine defaults for unspecified inputs using `optimization_config` metric_names, reference_point, minimize = _pareto_frontier_plot_input_processing( experiment=experiment, metric_names=metric_names, reference_point=reference_point, minimize=minimize, ) df = exp_to_df(experiment) Y = df[list(metric_names)].to_numpy() Y_pareto = ( _extract_observed_pareto_2d( Y=Y, reference_point=reference_point, minimize=minimize ) if minimize is not None else None ) hovertext = [f"Arm name: {arm_name}" for arm_name in df["arm_name"]] return scatter_plot_with_pareto_frontier_plotly( Y=Y, Y_pareto=Y_pareto, metric_x=metric_names[0], metric_y=metric_names[1], reference_point=reference_point, minimize=minimize, hovertext=hovertext, ) def _objective_vs_true_objective_scatter( model: ModelBridge, objective_metric_name: str, true_objective_metric_name: str, ) -> go.Figure: plot = plot_multiple_metrics( model=model, metric_x=objective_metric_name, metric_y=true_objective_metric_name, rel_x=False, rel_y=False, ) fig = go.Figure(plot.data) fig.layout.title.text = ( f"Objective {objective_metric_name} vs. True Objective " f"Metric {true_objective_metric_name}" ) return fig # TODO: may want to have a way to do this with a plot_fn # that returns a list of plots, such as get_standard_plots
[docs]def get_figure_and_callback( plot_fn: Callable[["Scheduler"], go.Figure] ) -> Tuple[go.Figure, Callable[["Scheduler"], None]]: """ Produce a figure and a callback for updating the figure in place. A likely use case is that `plot_fn` takes a Scheduler instance and returns a plotly Figure. Then `get_figure_and_callback` will produce a figure and callback that updates that figure according to `plot_fn` when the callback is passed to `Scheduler.run_n_trials` or `Scheduler.run_all_trials`. Args: plot_fn: A function for producing a Plotly figure from a scheduler. If `plot_fn` raises a `RuntimeError`, the update wil be skipped and optimization will proceed. Example: >>> def _plot(scheduler: Scheduler): >>> standard_plots = get_standard_plots(scheduler.experiment) >>> return standard_plots[0] >>> >>> fig, callback = get_figure_and_callback(_plot) """ fig = go.FigureWidget(layout=go.Layout()) # pyre-fixme[53]: Captured variable `fig` is not annotated. def _update_fig_in_place(scheduler: "Scheduler") -> None: try: new_fig = plot_fn(scheduler) except RuntimeError as e: logging.warning( f"Plotting function called via callback failed with error {e}." "Skipping plot update." ) return fig.update(data=new_fig._data, layout=new_fig._layout, overwrite=True) return fig, _update_fig_in_place
def _warn_and_create_warning_plot(warning_msg: str) -> go.Figure: logger.warning(warning_msg) return ( go.Figure() .add_annotation(text=warning_msg, showarrow=False, font={"size": 20}) .update_xaxes(showgrid=False, showticklabels=False, zeroline=False) .update_yaxes(showgrid=False, showticklabels=False, zeroline=False) )