Source code for ax.modelbridge.transforms.task_encode
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Dict, List, Optional, TYPE_CHECKING
from ax.core.observation import Observation
from ax.core.parameter import ChoiceParameter, Parameter, ParameterType
from ax.core.search_space import SearchSpace
from ax.core.types import TParamValue
from ax.modelbridge.transforms.choice_encode import OrderedChoiceEncode
from ax.modelbridge.transforms.utils import construct_new_search_space
from ax.models.types import TConfig
if TYPE_CHECKING:
# import as module to make sphinx-autodoc-typehints happy
from ax import modelbridge as modelbridge_module # noqa F401
[docs]class TaskEncode(OrderedChoiceEncode):
"""Convert task ChoiceParameters to integer-valued ChoiceParameters.
Parameters will be transformed to an integer ChoiceParameter with
property `is_task=True`, mapping values from the original choice domain to a
contiguous range integers `0, 1, ..., n_choices-1`.
In the inverse transform, parameters will be mapped back onto the original domain.
Transform is done in-place.
"""
def __init__(
self,
search_space: Optional[SearchSpace] = None,
observations: Optional[List[Observation]] = None,
modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None,
config: Optional[TConfig] = None,
) -> None:
assert search_space is not None, "TaskEncode requires search space"
# Identify parameters that should be transformed
self.encoded_parameters: Dict[str, Dict[TParamValue, int]] = {}
for p in search_space.parameters.values():
if isinstance(p, ChoiceParameter) and p.is_task:
if p.is_fidelity:
raise ValueError(
f"Task parameter {p.name} cannot simultaneously be "
"a fidelity parameter."
)
self.encoded_parameters[p.name] = {
original_value: transformed_value
for transformed_value, original_value in enumerate(p.values)
}
self.encoded_parameters_inverse: Dict[str, Dict[int, TParamValue]] = {
p_name: {
transformed_value: original_value
for original_value, transformed_value in transforms.items()
}
for p_name, transforms in self.encoded_parameters.items()
}
def _transform_search_space(self, search_space: SearchSpace) -> SearchSpace:
transformed_parameters: Dict[str, Parameter] = {}
for p_name, p in search_space.parameters.items():
if p_name in self.encoded_parameters and isinstance(p, ChoiceParameter):
if p.is_fidelity:
raise ValueError(
f"Cannot choice-encode fidelity parameter {p_name}."
)
# Choice(|K|) => Choice(0, K-1, is_task=True)
transformed_parameters[p_name] = ChoiceParameter(
name=p_name,
parameter_type=ParameterType.INT,
values=list(range(len(p.values))), # pyre-ignore [6]
is_ordered=p.is_ordered,
is_task=True,
sort_values=True,
)
else:
transformed_parameters[p.name] = p
return construct_new_search_space(
search_space=search_space,
parameters=list(transformed_parameters.values()),
parameter_constraints=[
pc.clone_with_transformed_parameters(
transformed_parameters=transformed_parameters
)
for pc in search_space.parameter_constraints
],
)