# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import copy
from dataclasses import dataclass
from typing import Any, Callable, Dict
from ax.benchmark.benchmark_problem import (
BenchmarkProblem,
MultiObjectiveBenchmarkProblem,
SingleObjectiveBenchmarkProblem,
)
from ax.benchmark.problems.hd_embedding import embed_higher_dimension
from ax.benchmark.problems.hpo.torchvision import PyTorchCNNTorchvisionBenchmarkProblem
from ax.benchmark.problems.synthetic.hss.jenatton import get_jenatton_benchmark_problem
from botorch.test_functions import synthetic
from botorch.test_functions.multi_objective import BraninCurrin
[docs]@dataclass
class BenchmarkProblemRegistryEntry:
factory_fn: Callable[..., BenchmarkProblem]
factory_kwargs: Dict[str, Any]
BENCHMARK_PROBLEM_REGISTRY = {
"ackley4": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Ackley,
"test_problem_kwargs": {"dim": 4},
"num_trials": 40,
"infer_noise": True,
},
),
"branin": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Branin,
"test_problem_kwargs": {},
"num_trials": 30,
"infer_noise": True,
},
),
"branin_currin": BenchmarkProblemRegistryEntry(
factory_fn=MultiObjectiveBenchmarkProblem.from_botorch_multi_objective,
factory_kwargs={
"test_problem_class": BraninCurrin,
"test_problem_kwargs": {},
"num_trials": 30,
"infer_noise": True,
},
),
"branin_currin30": BenchmarkProblemRegistryEntry(
factory_fn=lambda n: embed_higher_dimension(
problem=MultiObjectiveBenchmarkProblem.from_botorch_multi_objective(
test_problem_class=BraninCurrin,
test_problem_kwargs={},
num_trials=100,
infer_noise=True,
),
total_dimensionality=n,
),
factory_kwargs={"n": 30},
),
"griewank4": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Griewank,
"test_problem_kwargs": {"dim": 4},
"num_trials": 40,
"infer_noise": True,
},
),
"hartmann3": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Hartmann,
"test_problem_kwargs": {"dim": 3},
"num_trials": 30,
"infer_noise": True,
},
),
"hartmann6": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Hartmann,
"test_problem_kwargs": {"dim": 6},
"num_trials": 50,
"infer_noise": True,
},
),
"hartmann30": BenchmarkProblemRegistryEntry(
factory_fn=lambda n: embed_higher_dimension(
problem=SingleObjectiveBenchmarkProblem.from_botorch_synthetic(
test_problem_class=synthetic.Hartmann,
test_problem_kwargs={"dim": 6},
num_trials=100,
infer_noise=True,
),
total_dimensionality=n,
),
factory_kwargs={"n": 30},
),
"hpo_pytorch_cnn_MNIST": BenchmarkProblemRegistryEntry(
factory_fn=PyTorchCNNTorchvisionBenchmarkProblem.from_dataset_name,
factory_kwargs={"name": "MNIST", "num_trials": 50, "infer_noise": True},
),
"hpo_pytorch_cnn_FashionMNIST": BenchmarkProblemRegistryEntry(
factory_fn=PyTorchCNNTorchvisionBenchmarkProblem.from_dataset_name,
factory_kwargs={"name": "FashionMNIST", "num_trials": 50, "infer_noise": True},
),
"jenatton": BenchmarkProblemRegistryEntry(
factory_fn=get_jenatton_benchmark_problem,
factory_kwargs={"num_trials": 50, "infer_noise": True},
),
"levy4": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Levy,
"test_problem_kwargs": {"dim": 4},
"num_trials": 40,
"infer_noise": True,
},
),
"powell4": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Powell,
"test_problem_kwargs": {"dim": 4},
"num_trials": 40,
"infer_noise": True,
},
),
"rosenbrock4": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Rosenbrock,
"test_problem_kwargs": {"dim": 4},
"num_trials": 40,
"infer_noise": True,
},
),
"six_hump_camel": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.SixHumpCamel,
"test_problem_kwargs": {},
"num_trials": 30,
"infer_noise": True,
},
),
"three_hump_camel": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.ThreeHumpCamel,
"test_problem_kwargs": {},
"num_trials": 30,
"infer_noise": True,
},
),
# Problems without inferred noise
"branin_fixed_noise": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Branin,
"test_problem_kwargs": {},
"num_trials": 30,
"infer_noise": False,
},
),
"branin_currin_fixed_noise": BenchmarkProblemRegistryEntry(
factory_fn=MultiObjectiveBenchmarkProblem.from_botorch_multi_objective,
factory_kwargs={
"test_problem_class": BraninCurrin,
"test_problem_kwargs": {},
"num_trials": 30,
"infer_noise": False,
},
),
"branin_currin30_fixed_noise": BenchmarkProblemRegistryEntry(
factory_fn=lambda n: embed_higher_dimension(
problem=MultiObjectiveBenchmarkProblem.from_botorch_multi_objective(
test_problem_class=BraninCurrin,
test_problem_kwargs={},
num_trials=100,
infer_noise=False,
),
total_dimensionality=n,
),
factory_kwargs={"n": 30},
),
"hartmann6_fixed_noise": BenchmarkProblemRegistryEntry(
factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic,
factory_kwargs={
"test_problem_class": synthetic.Hartmann,
"test_problem_kwargs": {"dim": 6},
"num_trials": 50,
"infer_noise": False,
},
),
"hartmann30_fixed_noise": BenchmarkProblemRegistryEntry(
factory_fn=lambda n: embed_higher_dimension(
problem=SingleObjectiveBenchmarkProblem.from_botorch_synthetic(
test_problem_class=synthetic.Hartmann,
test_problem_kwargs={"dim": 6},
num_trials=100,
infer_noise=False,
),
total_dimensionality=n,
),
factory_kwargs={"n": 30},
),
"jenatton_fixed_noise": BenchmarkProblemRegistryEntry(
factory_fn=get_jenatton_benchmark_problem,
factory_kwargs={"num_trials": 50, "infer_noise": False},
),
}
[docs]def get_problem(problem_name: str, **additional_kwargs: Any) -> BenchmarkProblem:
entry = BENCHMARK_PROBLEM_REGISTRY[problem_name]
kwargs = copy.copy(entry.factory_kwargs)
kwargs.update(additional_kwargs)
return entry.factory_fn(**kwargs)