Source code for ax.benchmark.problems.hd_embedding
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import copy
from ax.benchmark.benchmark_problem import BenchmarkProblem
from ax.core.parameter import ParameterType, RangeParameter
from ax.core.search_space import SearchSpace
[docs]def embed_higher_dimension(
problem: BenchmarkProblem, total_dimensionality: int
) -> BenchmarkProblem:
"""
Return a new `BenchmarkProblem` with enough `RangeParameter`s added to the
search space to make its total dimensionality equal to `total_dimensionality`
and add `total_dimensionality` to its name.
The search space of the original `problem` is within the search space of the
new problem, and the constraints are copied from the original problem.
"""
num_dummy_dimensions = total_dimensionality - len(problem.search_space.parameters)
search_space = SearchSpace(
parameters=[
*problem.search_space.parameters.values(),
*[
RangeParameter(
name=f"embedding_dummy_{i}",
parameter_type=ParameterType.FLOAT,
lower=0,
upper=1,
)
for i in range(num_dummy_dimensions)
],
],
parameter_constraints=problem.search_space.parameter_constraints,
)
# if problem name already has dimensionality in it, strip it
def _is_dim_suffix(s: str) -> bool:
return s[-1] == "d" and all(char in "0123456789" for char in s[:-1])
orig_name_without_dimensionality = "_".join(
[substr for substr in problem.name.split("_") if not _is_dim_suffix(substr)]
)
new_name = f"{orig_name_without_dimensionality}_{total_dimensionality}d"
new_problem = copy.copy(problem)
new_problem.name = new_name
new_problem.search_space = search_space
return new_problem