Source code for ax.utils.testing.torch_stubs
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Dict
import torch
[docs]def get_optimizer_kwargs() -> Dict[str, int]:
return {"num_restarts": 2, "raw_samples": 2, "maxiter": 2, "batch_limit": 1}
# pyre-fixme[3]: Return type must be annotated.
[docs]def get_torch_test_data(
# pyre-fixme[2]: Parameter must be annotated.
dtype=torch.float,
cuda: bool = False,
constant_noise: bool = True,
# pyre-fixme[2]: Parameter must be annotated.
task_features=None,
offset: float = 0.0,
):
tkwargs = {"device": torch.device("cuda" if cuda else "cpu"), "dtype": dtype}
Xs = [
torch.tensor(
[
[1.0 + offset, 2.0 + offset, 3.0 + offset],
[2.0 + offset, 3.0 + offset, 4.0 + offset],
],
**tkwargs,
)
]
Ys = [torch.tensor([[3.0 + offset], [4.0 + offset]], **tkwargs)]
Yvars = [torch.tensor([[0.0 + offset], [2.0 + offset]], **tkwargs)]
if constant_noise:
Yvars[0].fill_(1.0)
bounds = [
(0.0 + offset, 1.0 + offset),
(1.0 + offset, 4.0 + offset),
(2.0 + offset, 5.0 + offset),
]
feature_names = ["x1", "x2", "x3"]
task_features = [] if task_features is None else task_features
metric_names = ["y", "r"]
return Xs, Ys, Yvars, bounds, task_features, feature_names, metric_names