Source code for ax.modelbridge.transforms.standardize_y

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import DefaultDict, Dict, List, Optional, Tuple, TYPE_CHECKING, Union

import numpy as np
from ax.core.observation import Observation, ObservationData, ObservationFeatures
from ax.core.optimization_config import OptimizationConfig
from ax.core.outcome_constraint import OutcomeConstraint, ScalarizedOutcomeConstraint
from ax.core.search_space import SearchSpace
from ax.core.types import TParamValue
from ax.exceptions.core import DataRequiredError
from ax.modelbridge.transforms.base import Transform
from ax.modelbridge.transforms.utils import get_data
from ax.models.types import TConfig
from ax.utils.common.logger import get_logger


if TYPE_CHECKING:
    # import as module to make sphinx-autodoc-typehints happy
    from ax.modelbridge import base as base_modelbridge  # noqa F401  # pragma: no cover


# pyre-fixme[5]: Global expression must be annotated.
logger = get_logger(__name__)


[docs]class StandardizeY(Transform): """Standardize Y, separately for each metric. Transform is done in-place. """ def __init__( self, search_space: Optional[SearchSpace] = None, observations: Optional[List[Observation]] = None, modelbridge: Optional["base_modelbridge.ModelBridge"] = None, config: Optional[TConfig] = None, ) -> None: if observations is None or len(observations) == 0: raise DataRequiredError("`StandardizeY` transform requires non-empty data.") observation_data = [obs.data for obs in observations] Ys = get_data(observation_data=observation_data) # Compute means and SDs # pyre-fixme[6]: Expected `DefaultDict[Union[str, Tuple[str, Optional[Union[b... # pyre-fixme[4]: Attribute must be annotated. self.Ymean, self.Ystd = compute_standardization_parameters(Ys) def _transform_observation_data( self, observation_data: List[ObservationData], ) -> List[ObservationData]: # Transform observation data for obsd in observation_data: means = np.array([self.Ymean[m] for m in obsd.metric_names]) stds = np.array([self.Ystd[m] for m in obsd.metric_names]) obsd.means = (obsd.means - means) / stds obsd.covariance /= np.dot(stds[:, None], stds[:, None].transpose()) return observation_data
[docs] def transform_optimization_config( self, optimization_config: OptimizationConfig, modelbridge: Optional["base_modelbridge.ModelBridge"] = None, fixed_features: Optional[ObservationFeatures] = None, ) -> OptimizationConfig: for c in optimization_config.all_constraints: if c.relative: raise ValueError( f"StandardizeY transform does not support relative constraint {c}" ) if isinstance(c, ScalarizedOutcomeConstraint): # transform \sum (wi * yi) <= C to # \sum (wi * si * zi) <= C - \sum (wi * mu_i) that zi = (yi - mu_i) / si # update bound C to new c = C.bound - sum_i (wi * mu_i) agg_mean = np.sum( [ c.weights[i] * self.Ymean[metric.name] for i, metric in enumerate(c.metrics) ] ) c.bound = float(c.bound - agg_mean) # update the weights in the scalarized constraint # new wi = wi * si new_weight = [ c.weights[i] * self.Ystd[metric.name] for i, metric in enumerate(c.metrics) ] c.weights = new_weight else: c.bound = float( (c.bound - self.Ymean[c.metric.name]) / self.Ystd[c.metric.name] ) return optimization_config
def _untransform_observation_data( self, observation_data: List[ObservationData], ) -> List[ObservationData]: for obsd in observation_data: means = np.array([self.Ymean[m] for m in obsd.metric_names]) stds = np.array([self.Ystd[m] for m in obsd.metric_names]) obsd.means = obsd.means * stds + means obsd.covariance *= np.dot(stds[:, None], stds[:, None].transpose()) return observation_data
[docs] def untransform_outcome_constraints( self, outcome_constraints: List[OutcomeConstraint], fixed_features: Optional[ObservationFeatures] = None, ) -> List[OutcomeConstraint]: for c in outcome_constraints: if c.relative: raise ValueError( # pragma: no cover f"StandardizeY transform does not support relative constraint {c}" ) if isinstance(c, ScalarizedOutcomeConstraint): raise ValueError( # pragma: no cover "ScalarizedOutcomeConstraint not supported" ) c.bound = float( c.bound * self.Ystd[c.metric.name] + self.Ymean[c.metric.name] ) return outcome_constraints
[docs]def compute_standardization_parameters( Ys: DefaultDict[Union[str, Tuple[str, TParamValue]], List[float]] ) -> Tuple[ Dict[Union[str, Tuple[str, str]], float], Dict[Union[str, Tuple[str, str]], float] ]: """Compute mean and std. dev of Ys.""" Ymean = {k: np.mean(y) for k, y in Ys.items()} # We use the Bessel correction term (divide by N-1) here in order to # be consistent with the default behavior of torch.std that is used to # validate input data standardization in BoTorch. Ystd = {k: np.std(y, ddof=1) if len(y) > 1 else 0.0 for k, y in Ys.items()} for k, s in Ystd.items(): # Don't standardize if variance is too small. if s < 1e-8: Ystd[k] = 1.0 logger.info(f"Outcome {k} is constant, within tolerance.") # pyre-fixme[7]: Expected `Tuple[Dict[Union[Tuple[str, str], str], float], # Dict[Union[Tuple[str, str], str], float]]` but got `Tuple[Dict[Union[Tuple[str, # Union[None, bool, float, int, str]], str], typing.Any], Dict[Union[Tuple[str, # Union[None, bool, float, int, str]], str], typing.Any]]`. return Ymean, Ystd