Source code for ax.benchmark.problems.registry

# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from dataclasses import dataclass
from typing import Any, Callable, Dict

from ax.benchmark.benchmark_problem import (
    BenchmarkProblem,
    MultiObjectiveBenchmarkProblem,
    SingleObjectiveBenchmarkProblem,
)
from ax.benchmark.problems.hd_embedding import embed_higher_dimension
from ax.benchmark.problems.hpo.torchvision import PyTorchCNNTorchvisionBenchmarkProblem
from ax.benchmark.problems.synthetic.hss.jenatton import get_jenatton_benchmark_problem
from botorch.test_functions.multi_objective import BraninCurrin
from botorch.test_functions.synthetic import Ackley, Branin, Hartmann, Powell


[docs]@dataclass class BenchmarkProblemRegistryEntry: factory_fn: Callable[..., BenchmarkProblem] factory_kwargs: Dict[str, Any]
BENCHMARK_PROBLEM_REGISTRY = { "ackley": BenchmarkProblemRegistryEntry( factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic, factory_kwargs={"test_problem": Ackley(), "num_trials": 50}, ), "branin": BenchmarkProblemRegistryEntry( factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic, factory_kwargs={"test_problem": Branin(), "num_trials": 30}, ), "branin_currin": BenchmarkProblemRegistryEntry( factory_fn=MultiObjectiveBenchmarkProblem.from_botorch_multi_objective, factory_kwargs={"test_problem": BraninCurrin(), "num_trials": 30}, ), "branin_currin30": BenchmarkProblemRegistryEntry( factory_fn=lambda n: embed_higher_dimension( problem=MultiObjectiveBenchmarkProblem.from_botorch_multi_objective( test_problem=BraninCurrin(), num_trials=100 ), total_dimensionality=n, ), factory_kwargs={"n": 30}, ), "hartmann6": BenchmarkProblemRegistryEntry( factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic, factory_kwargs={"test_problem": Hartmann(dim=6), "num_trials": 50}, ), "hartmann30": BenchmarkProblemRegistryEntry( factory_fn=lambda n: embed_higher_dimension( problem=SingleObjectiveBenchmarkProblem.from_botorch_synthetic( test_problem=Hartmann(dim=6), num_trials=100 ), total_dimensionality=n, ), factory_kwargs={"n": 30}, ), "hpo_pytorch_cnn_MNIST": BenchmarkProblemRegistryEntry( factory_fn=PyTorchCNNTorchvisionBenchmarkProblem.from_dataset_name, factory_kwargs={"name": "MNIST", "num_trials": 50}, ), "hpo_pytorch_cnn_FashionMNIST": BenchmarkProblemRegistryEntry( factory_fn=PyTorchCNNTorchvisionBenchmarkProblem.from_dataset_name, factory_kwargs={"name": "FashionMNIST", "num_trials": 50}, ), "jenatton": BenchmarkProblemRegistryEntry( factory_fn=get_jenatton_benchmark_problem, factory_kwargs={"num_trials": 50}, ), "powell": BenchmarkProblemRegistryEntry( factory_fn=SingleObjectiveBenchmarkProblem.from_botorch_synthetic, factory_kwargs={"test_problem": Powell(), "num_trials": 50}, ), }
[docs]def get_problem( problem_name: str, ) -> BenchmarkProblem: entry = BENCHMARK_PROBLEM_REGISTRY[problem_name] return entry.factory_fn(**entry.factory_kwargs)