Source code for ax.models.torch.botorch_modular.utils

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import warnings
from typing import Any, Dict, List, Optional, Tuple, Type, Union

import torch
from ax.core.search_space import SearchSpaceDigest
from ax.exceptions.core import AxWarning, UnsupportedError
from ax.models.types import TConfig
from ax.utils.common.constants import Keys
from ax.utils.common.logger import get_logger
from ax.utils.common.typeutils import checked_cast
from botorch.acquisition.acquisition import AcquisitionFunction
from botorch.acquisition.monte_carlo import qNoisyExpectedImprovement
from botorch.acquisition.multi_objective.monte_carlo import (
    qNoisyExpectedHypervolumeImprovement,
)
from botorch.fit import fit_fully_bayesian_model_nuts, fit_gpytorch_model
from botorch.models import ModelListGP, SaasFullyBayesianSingleTaskGP
from botorch.models.gp_regression import FixedNoiseGP, SingleTaskGP
from botorch.models.gp_regression_fidelity import (
    FixedNoiseMultiFidelityGP,
    SingleTaskMultiFidelityGP,
)
from botorch.models.gp_regression_mixed import MixedSingleTaskGP
from botorch.models.gpytorch import BatchedMultiOutputGPyTorchModel, GPyTorchModel
from botorch.models.model import Model, ModelList
from botorch.models.multitask import FixedNoiseMultiTaskGP, MultiTaskGP
from botorch.models.pairwise_gp import PairwiseGP
from botorch.utils.datasets import FixedNoiseDataset, SupervisedDataset
from gpytorch.mlls.marginal_log_likelihood import MarginalLogLikelihood
from torch import Tensor


MIN_OBSERVED_NOISE_LEVEL = 1e-7
logger = get_logger(__name__)


[docs]def use_model_list( datasets: List[SupervisedDataset], botorch_model_class: Type[Model] ) -> bool: if issubclass(botorch_model_class, MultiTaskGP): # We currently always wrap multi-task models into `ModelListGP`. return True if len(datasets) == 1: # Just one outcome, can use single model. return False if issubclass(botorch_model_class, BatchedMultiOutputGPyTorchModel) and all( torch.equal(datasets[0].X(), ds.X()) for ds in datasets[1:] ): # Single model, batched multi-output case. return False # If there are multiple Xs and they are not all equal, we # use `ListSurrogate` and `ModelListGP`. return True
[docs]def choose_model_class( datasets: List[SupervisedDataset], search_space_digest: SearchSpaceDigest, ) -> Type[Model]: """Chooses a BoTorch `Model` using the given data (currently just Yvars) and its properties (information about task and fidelity features). Args: Yvars: List of tensors, each representing observation noise for a given outcome, where outcomes are in the same order as in Xs. task_features: List of columns of X that are tasks. fidelity_features: List of columns of X that are fidelity parameters. Returns: A BoTorch `Model` class. """ if len(search_space_digest.fidelity_features) > 1: raise NotImplementedError( "Only a single fidelity feature supported " f"(got: {search_space_digest.fidelity_features})." ) if len(search_space_digest.task_features) > 1: raise NotImplementedError( f"Only a single task feature supported " f"(got: {search_space_digest.task_features})." ) if search_space_digest.task_features and search_space_digest.fidelity_features: raise NotImplementedError( "Multi-task multi-fidelity optimization not yet supported." ) is_fixed_noise = [isinstance(ds, FixedNoiseDataset) for ds in datasets] all_inferred = not any(is_fixed_noise) if not all_inferred and not all(is_fixed_noise): raise ValueError( "Mix of known and unknown variances indicates valuation function " "errors. Variances should all be specified, or none should be." ) # Multi-task cases (when `task_features` specified). if search_space_digest.task_features and all_inferred: model_class = MultiTaskGP # Unknown observation noise. elif search_space_digest.task_features: model_class = FixedNoiseMultiTaskGP # Known observation noise. # Single-task multi-fidelity cases. elif search_space_digest.fidelity_features and all_inferred: model_class = SingleTaskMultiFidelityGP # Unknown observation noise. elif search_space_digest.fidelity_features: model_class = FixedNoiseMultiFidelityGP # Known observation noise. # Mixed optimization case. Note that presence of categorical # features in search space digest indicates that downstream in the # stack we chose not to perform continuous relaxation on those # features. elif search_space_digest.categorical_features: if not all_inferred: logger.warning( "Using `MixedSingleTaskGP` despire the known `Yvar` values. This " "is a temporary measure while fixed-noise mixed BO is in the works." ) model_class = MixedSingleTaskGP # Single-task single-fidelity cases. elif all_inferred: # Unknown observation noise. model_class = SingleTaskGP else: model_class = FixedNoiseGP # Known observation noise. logger.debug(f"Chose BoTorch model class: {model_class}.") return model_class
[docs]def choose_botorch_acqf_class( pending_observations: Optional[List[Tensor]] = None, outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None, linear_constraints: Optional[Tuple[Tensor, Tensor]] = None, fixed_features: Optional[Dict[int, float]] = None, objective_thresholds: Optional[Tensor] = None, objective_weights: Optional[Tensor] = None, ) -> Type[AcquisitionFunction]: """Chooses a BoTorch `AcquisitionFunction` class.""" if objective_thresholds is not None or ( # using objective_weights is a less-than-ideal fix given its ambiguity, # the real fix would be to revisit the infomration passed down via # the modelbridge (and be explicit about whether we scalarize or perform MOO) objective_weights is not None and objective_weights.nonzero().numel() > 1 ): acqf_class = qNoisyExpectedHypervolumeImprovement else: acqf_class = qNoisyExpectedImprovement logger.debug(f"Chose BoTorch acquisition function class: {acqf_class}.") return acqf_class
[docs]def construct_acquisition_and_optimizer_options( acqf_options: TConfig, model_gen_options: Optional[TConfig] = None ) -> Tuple[TConfig, TConfig]: """Extract acquisition and optimizer options from `model_gen_options`.""" acq_options = acqf_options.copy() opt_options = {} if model_gen_options: acq_options.update( checked_cast(dict, model_gen_options.get(Keys.ACQF_KWARGS, {})) ) # TODO: Add this if all acq. functions accept the `subset_model` # kwarg or opt for kwarg filtering. # acq_options[SUBSET_MODEL] = model_gen_options.get(SUBSET_MODEL) opt_options = checked_cast( dict, model_gen_options.get(Keys.OPTIMIZER_KWARGS, {}) ).copy() return acq_options, opt_options
[docs]def convert_to_block_design( datasets: List[SupervisedDataset], metric_names: List[str], force: bool = False, ) -> Tuple[List[SupervisedDataset], List[str]]: # Convert data to "block design". TODO: Figure out a better # solution for this using the data containers (pass outcome # names as properties of the data containers) is_fixed = [isinstance(ds, FixedNoiseDataset) for ds in datasets] if any(is_fixed) and not all(is_fixed): raise UnsupportedError( "Cannot convert mixed data with and without variance " "observaitons to `block design`." ) is_fixed = all(is_fixed) Xs = [dataset.X() for dataset in datasets] metric_names = ["_".join(metric_names)] # TODO: Improve this. if len({X.shape for X in Xs}) != 1 or not all( torch.equal(X, Xs[0]) for X in Xs[1:] ): if not force: raise UnsupportedError( "Cannot convert data to non-block design data. " "To force this and drop data not shared between " "outcomes use `force=True`." ) warnings.warn( "Forcing converion of data not complying to a block design " "to block design by dropping observations that are not shared " "between outcomes.", AxWarning, ) X_shared, idcs_shared = _get_shared_rows(Xs=Xs) Y = torch.cat([ds.Y()[i] for ds, i in zip(datasets, idcs_shared)], dim=-1) if is_fixed: Yvar = torch.cat( [ds.Yvar()[i] for ds, i in zip(datasets, idcs_shared)], dim=-1, ) datasets = [FixedNoiseDataset(X=X_shared, Y=Y, Yvar=Yvar)] else: datasets = [SupervisedDataset(X=X_shared, Y=Y)] return datasets, metric_names # data complies to block design, can concat with impunity Y = torch.cat([ds.Y() for ds in datasets], dim=-1) if is_fixed: Yvar = torch.cat([ds.Yvar() for ds in datasets], dim=-1) # pyre-ignore [16] datasets = [FixedNoiseDataset(X=Xs[0], Y=Y, Yvar=Yvar)] else: datasets = [SupervisedDataset(X=Xs[0], Y=Y)] return datasets, metric_names
def _get_shared_rows(Xs: List[Tensor]) -> Tuple[Tensor, List[Tensor]]: """Extract shared rows from a list of tensors Args: Xs: A list of m two-dimensional tensors with shapes `(n_1 x d), ..., (n_m x d)`. It is not required that the `n_i` are the same. Returns: A two-tuple containing (i) a Tensor with the rows that are shared between all the Tensors in `Xs`, and (ii) a list of index tensors that indicate the location of these rows in the respective elements of `Xs`. """ idcs_shared = [] Xs_sorted = sorted(Xs, key=len) X_shared = Xs_sorted[0].clone() for X in Xs_sorted[1:]: X_shared = X_shared[(X_shared == X.unsqueeze(-2)).all(dim=-1).any(dim=-2)] # get indices for X in Xs: same = (X_shared == X.unsqueeze(-2)).all(dim=-1).any(dim=-1) idcs_shared.append(torch.arange(same.shape[-1], device=X_shared.device)[same]) return X_shared, idcs_shared
[docs]def fit_botorch_model( model: Union[Model, ModelList, ModelListGP], mll_class: Type[MarginalLogLikelihood], mll_options: Optional[Dict[str, Any]] = None, ) -> None: """Fit a BoTorch model.""" models = model.models if isinstance(model, (ModelListGP, ModelList)) else [model] for m in models: # TODO: Support deterministic models when we support `ModelList` if isinstance(m, SaasFullyBayesianSingleTaskGP): fit_fully_bayesian_model_nuts(m, disable_progbar=True) elif isinstance(m, (GPyTorchModel, PairwiseGP)): mll_options = mll_options or {} mll = mll_class(likelihood=m.likelihood, model=m, **mll_options) fit_gpytorch_model(mll) else: raise NotImplementedError( f"Model of type {m.__class__.__name__} is currently not supported." )