Source code for ax.modelbridge.transforms.map_unit_x

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import annotations

from collections import defaultdict

from typing import Dict, List, Optional, Tuple, TYPE_CHECKING

from ax.core.observation import ObservationData, ObservationFeatures
from ax.core.search_space import SearchSpace
from ax.modelbridge.transforms.unit_x import UnitX
from ax.models.types import TConfig

if TYPE_CHECKING:
    # import as module to make sphinx-autodoc-typehints happy
    from ax import modelbridge as modelbridge_module  # noqa F401  # pragma: no cover


[docs]class MapUnitX(UnitX): """A `UnitX` transform for map parameters in observation_features, identified as those that are not part of the search space. Since they are not part of the search space, the bounds are inferred from the set of observation features. Only observation features are transformed; all other objects undergo identity transform. """ target_lb: float = 0.0 target_range: float = 1.0 def __init__( self, search_space: SearchSpace, observation_features: List[ObservationFeatures], observation_data: List[ObservationData], modelbridge: Optional[modelbridge_module.base.ModelBridge] = None, config: Optional[TConfig] = None, ) -> None: # Loop through observation features and identify parameters that # are not part of the search space. Store all observed values to # infer bounds map_values = defaultdict(list) for obsf in observation_features: for p in obsf.parameters: if p not in search_space.parameters: map_values[p].append(obsf.parameters[p]) def get_range(values: List) -> Tuple[float, float]: return (min(values), max(values)) self.bounds: Dict[str, Tuple[float, float]] = { p: get_range(v) for p, v in map_values.items() } def _transform_search_space(self, search_space: SearchSpace) -> SearchSpace: return search_space def _transform_parameter_distributions(self, search_space: SearchSpace) -> None: return super(UnitX, self)._transform_parameter_distributions( search_space=search_space )
[docs] def untransform_observation_features( self, observation_features: List[ObservationFeatures] ) -> List[ObservationFeatures]: """Untransform if the parameter exists in the observation feature. Note the extra existence check from `UnitX.untransform_observation_features` because when map key features are used, they may not exist after generation or best point computations.""" for obsf in observation_features: for p_name, (l, u) in self.bounds.items(): if p_name in obsf.parameters: param: float = obsf.parameters[p_name] # pyre-ignore[9] scale_fac = (u - l) / self.target_range obsf.parameters[p_name] = scale_fac * (param - self.target_lb) + l return observation_features