Source code for ax.metrics.noisy_function_map

#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import annotations

from typing import Any, Dict, Iterable, Mapping, Optional

import numpy as np
import pandas as pd
from ax.core.base_trial import BaseTrial
from ax.core.map_data import MapData, MapKeyInfo
from ax.core.map_metric import MapMetric
from ax.utils.common.logger import get_logger
from ax.utils.common.serialization import serialize_init_args
from ax.utils.common.typeutils import checked_cast

logger = get_logger(__name__)


[docs]class NoisyFunctionMapMetric(MapMetric): """A metric defined by a generic deterministic function, with normal noise with mean 0 and mean_sd scale added to the result. """ def __init__( self, name: str, param_names: Iterable[str], map_key_infos: Iterable[MapKeyInfo], noise_sd: float = 0.0, lower_is_better: Optional[bool] = None, cache_evaluations: bool = True, ) -> None: """ Metric is computed by evaluating a deterministic function, implemented in f. f will expect an array x, which is constructed from the arm parameters by extracting the values of the parameter names given in param_names, in that order. Args: name: Name of the metric param_names: An ordered list of names of parameters to be passed to the deterministic function. noise_sd: Scale of normal noise added to the function result. lower_is_better: Flag for metrics which should be minimized. cache_evaluations: Flag for whether previous evaluations should be cached. If so, those values are returned for previously evaluated parameters using the same realization of the observation noise. """ self.param_names = param_names self.map_key_infos = map_key_infos self.noise_sd = noise_sd self.cache = {} self.cache_evaluations = cache_evaluations super().__init__(name=name, lower_is_better=lower_is_better)
[docs] @classmethod def is_available_while_running(cls) -> bool: return True
[docs] @classmethod def overwrite_existing_data(cls) -> bool: return True
[docs] def clone(self) -> NoisyFunctionMapMetric: return self.__class__( name=self._name, param_names=self.param_names, map_key_infos=self.map_key_infos, noise_sd=self.noise_sd, lower_is_better=self.lower_is_better, cache_evaluations=self.cache_evaluations, )
[docs] def fetch_trial_data( self, trial: BaseTrial, noisy: bool = True, **kwargs: Any ) -> MapData: res = [ self.f(np.fromiter(arm.parameters.values(), dtype=float)) for arm in trial.arms ] df = pd.DataFrame( { "arm_name": [arm.name for arm in trial.arms], "metric_name": self.name, "sem": self.noise_sd if noisy else 0.0, "trial_index": trial.index, "mean": [item["mean"] for item in res], **{ mki.key: [item[mki.key] for item in res] for mki in self.map_key_infos }, } ) return MapData(df=df, map_key_infos=self.map_key_infos)
[docs] def f(self, x: np.ndarray) -> Mapping[str, Any]: """The deterministic function that produces the metric outcomes.""" raise NotImplementedError
[docs] @classmethod def serialize_init_args(cls, obj: Any) -> Dict[str, Any]: nf_map_metric = checked_cast(NoisyFunctionMapMetric, obj) init_args = serialize_init_args( object=nf_map_metric, exclude_fields=["map_key_infos"] ) init_args["map_key_infos"] = [ serialize_init_args(object=mki) for mki in nf_map_metric.map_key_infos ] return init_args
[docs] @classmethod def deserialize_init_args(cls, args: Dict[str, Any]) -> Dict[str, Any]: args["map_key_infos"] = [MapKeyInfo(**mki) for mki in args["map_key_infos"]] return super().deserialize_init_args(args=args)