Source code for ax.runners.botorch_test_problem
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import importlib
from typing import Any, Dict, Iterable, Set
import torch
from ax.core.base_trial import BaseTrial, TrialStatus
from ax.core.runner import Runner
from ax.utils.common.base import Base
from ax.utils.common.equality import equality_typechecker
from ax.utils.common.typeutils import checked_cast
from botorch.test_functions.base import BaseTestProblem
[docs]class BotorchTestProblemRunner(Runner):
"""A Runner for evaluation Botorch BaseTestProblems.
Given a trial the Runner will evaluate the BaseTestProblem.forward method for each
arm in the trial, as well as return some metadata about the underlying Botorch
problem such as the noise_std. We compute the full result on the Runner (as opposed
to the Metric as is typical in synthetic test problems) because the BoTorch problem
computes all metrics in one stacked tensor in the MOO case, and we wish to avoid
recomputation per metric.
"""
def __init__(self, test_problem: BaseTestProblem) -> None:
self.test_problem = test_problem
@equality_typechecker
def __eq__(self, other: Base) -> bool:
if not isinstance(other, BotorchTestProblemRunner):
return False
return (
self.test_problem.__class__.__name__
== other.test_problem.__class__.__name__
)
[docs] def run(self, trial: BaseTrial) -> Dict[str, Any]:
return {
"Ys": {
arm.name: self.test_problem.forward(
torch.tensor(
[
value
for _key, value in [*arm.parameters.items()][
: self.test_problem.dim
]
]
)
).tolist()
for arm in trial.arms
},
}
[docs] def poll_trial_status(
self, trials: Iterable[BaseTrial]
) -> Dict[TrialStatus, Set[int]]:
return {TrialStatus.COMPLETED: {t.index for t in trials}}
[docs] @classmethod
def serialize_init_args(cls, runner: Runner) -> Dict[str, Any]:
"""Serialize the properties needed to initialize the runner.
Used for storage.
"""
runner = checked_cast(BotorchTestProblemRunner, runner)
return {
"test_problem_module": runner.test_problem.__module__,
"test_problem_class_name": runner.test_problem.__class__.__name__,
}
[docs] @classmethod
def deserialize_init_args(cls, args: Dict[str, Any]) -> Dict[str, Any]:
"""Given a dictionary, deserialize the properties needed to initialize the runner.
Used for storage.
"""
module = importlib.import_module(args["test_problem_module"])
return {"test_problem": getattr(module, args["test_problem_class_name"])()}