#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import warnings
from typing import Union, Dict, List, Optional, Tuple
import numpy as np
import plotly.graph_objs as go
from ax.core.experiment import Experiment
from ax.core.objective import MultiObjective
from ax.core.optimization_config import (
MultiObjectiveOptimizationConfig,
OptimizationConfig,
)
from ax.core.outcome_constraint import ObjectiveThreshold
from ax.exceptions.core import UserInputError
from ax.plot.base import CI_OPACITY, DECIMALS, AxPlotConfig, AxPlotTypes
from ax.plot.color import COLORS, rgba, DISCRETE_COLOR_SCALE
from ax.plot.helper import extend_range, _format_CI, _format_dict
from ax.plot.pareto_utils import ParetoFrontierResults
from ax.utils.common.typeutils import checked_cast, not_none
from scipy.stats import norm
DEFAULT_CI_LEVEL: float = 0.9
VALID_CONSTRAINT_OP_NAMES = {"GEQ", "LEQ"}
def _make_label(
mean: float, sem: float, name: str, is_relative: bool, Z: Optional[float]
) -> str:
estimate = str(round(mean, DECIMALS))
perc = "%" if is_relative else ""
ci = (
""
if (Z is None or np.isnan(sem))
else _format_CI(estimate=mean, sd=sem, relative=is_relative, zval=Z)
)
return f"{name}: {estimate}{perc} {ci}<br>"
def _filter_outliers(Y: np.ndarray, m: float = 2.0) -> np.ndarray:
std_filter = abs(Y - np.median(Y, axis=0)) < m * np.std(Y, axis=0)
return Y[np.all(abs(std_filter), axis=1)]
[docs]def scatter_plot_with_pareto_frontier_plotly(
Y: np.ndarray,
Y_pareto: Optional[np.ndarray],
metric_x: Optional[str],
metric_y: Optional[str],
reference_point: Optional[Tuple[float, float]],
minimize: Optional[Union[bool, Tuple[bool, bool]]] = True,
) -> go.Figure:
"""Plots a scatter of all points in ``Y`` for ``metric_x`` and ``metric_y``
with a reference point and Pareto frontier from ``Y_pareto``.
Points in the scatter are colored in a gradient representing their trial index,
with metric_x on x-axis and metric_y on y-axis. Reference point is represented
as a star and Pareto frontier –– as a line. The frontier connects to the reference
point via projection lines.
NOTE: Both metrics should have the same minimization setting, passed as `minimize`.
Args:
Y: Array of outcomes, of which the first two will be plotted.
Y_pareto: Array of Pareto-optimal points, first two outcomes in which will be
plotted.
metric_x: Name of first outcome in ``Y``.
metric_Y: Name of second outcome in ``Y``.
reference_point: Reference point for ``metric_x`` and ``metric_y``.
minimize: Whether the two metrics in the plot are being minimized or maximized.
"""
title = "Observed metric values"
if isinstance(minimize, bool):
minimize = (minimize, minimize)
Xs = Y[:, 0]
Ys = Y[:, 1]
experimental_points_scatter = [
go.Scatter(
x=Xs,
y=Ys,
mode="markers",
marker={
"color": np.linspace(0, 100, int(len(Xs) * 1.05)),
"colorscale": "magma",
"colorbar": {
"tickvals": [0, 50, 100],
"ticktext": [
1,
"iteration",
len(Xs),
],
},
},
name="Experimental points",
)
]
# No Pareto frontier is drawn if none is provided, or if the frontier consists of
# a single point and no reference points are provided.
if Y_pareto is None or (len(Y_pareto) == 1 and reference_point is None):
# `Y_pareto` input was not specified
range_x = extend_range(lower=min(Y[:, 0]), upper=max(Y[:, 0]))
range_y = extend_range(lower=min(Y[:, 1]), upper=max(Y[:, 1]))
pareto_step = reference_point_lines = reference_point_star = []
else:
title += " with Pareto frontier"
if reference_point:
if minimize is None:
minimize = tuple(
reference_point[i] >= max(Y_pareto[:, i]) for i in range(2)
)
reference_point_star = [
go.Scatter(
x=[reference_point[0]],
y=[reference_point[1]],
mode="markers",
marker={
"color": rgba(COLORS.STEELBLUE.value),
"size": 25,
"symbol": "star",
},
)
]
extra_point_x = min(Y_pareto[:, 0]) if minimize[0] else max(Y_pareto[:, 0])
reference_point_line_1 = go.Scatter(
x=[extra_point_x, reference_point[0]],
y=[reference_point[1], reference_point[1]],
mode="lines",
marker={"color": rgba(COLORS.STEELBLUE.value)},
)
extra_point_y = min(Y_pareto[:, 1]) if minimize[1] else max(Y_pareto[:, 1])
reference_point_line_2 = go.Scatter(
x=[reference_point[0], reference_point[0]],
y=[extra_point_y, reference_point[1]],
mode="lines",
marker={"color": rgba(COLORS.STEELBLUE.value)},
)
reference_point_lines = [reference_point_line_1, reference_point_line_2]
Y_pareto_with_extra = np.concatenate(
(
[[extra_point_x, reference_point[1]]],
Y_pareto,
[[reference_point[0], extra_point_y]],
),
axis=0,
)
pareto_step = [
go.Scatter(
x=Y_pareto_with_extra[:, 0],
y=Y_pareto_with_extra[:, 1],
mode="lines",
line_shape="hv",
marker={"color": rgba(COLORS.STEELBLUE.value)},
)
]
range_x = (
extend_range(lower=min(Y_pareto[:, 0]), upper=reference_point[0])
if minimize[0]
else extend_range(lower=reference_point[0], upper=max(Y_pareto[:, 0]))
)
range_y = (
extend_range(lower=min(Y_pareto[:, 1]), upper=reference_point[1])
if minimize[1]
else extend_range(lower=reference_point[1], upper=max(Y_pareto[:, 1]))
)
else: # Reference point was not specified
pareto_step = [
go.Scatter(
x=Y_pareto[:, 0],
y=Y_pareto[:, 1],
mode="lines",
line_shape="hv",
marker={"color": rgba(COLORS.STEELBLUE.value)},
)
]
reference_point_lines = reference_point_star = []
range_x = extend_range(lower=min(Y_pareto[:, 0]), upper=max(Y_pareto[:, 0]))
range_y = extend_range(lower=min(Y_pareto[:, 1]), upper=max(Y_pareto[:, 1]))
layout = go.Layout(
title=title,
showlegend=False,
xaxis={"title": metric_x or "", "range": range_x},
yaxis={"title": metric_y or "", "range": range_y},
)
return go.Figure(
layout=layout,
data=pareto_step
+ reference_point_lines
+ experimental_points_scatter
+ reference_point_star,
)
[docs]def scatter_plot_with_pareto_frontier(
Y: np.ndarray,
Y_pareto: np.ndarray,
metric_x: str,
metric_y: str,
reference_point: Tuple[float, float],
minimize: bool = True,
) -> AxPlotConfig:
return AxPlotConfig(
data=scatter_plot_with_pareto_frontier_plotly(
Y=Y,
Y_pareto=Y_pareto,
metric_x=metric_x,
metric_y=metric_y,
reference_point=reference_point,
),
plot_type=AxPlotTypes.GENERIC,
)
def _get_single_pareto_trace(
frontier: ParetoFrontierResults,
CI_level: float,
legend_label: str = "mean",
trace_color: Tuple[int] = COLORS.STEELBLUE.value,
show_parameterization_on_hover: bool = True,
) -> go.Scatter:
primary_means = frontier.means[frontier.primary_metric]
primary_sems = frontier.sems[frontier.primary_metric]
secondary_means = frontier.means[frontier.secondary_metric]
secondary_sems = frontier.sems[frontier.secondary_metric]
absolute_metrics = frontier.absolute_metrics
all_metrics = frontier.means.keys()
if frontier.arm_names is None:
arm_names = [f"Parameterization {i}" for i in range(len(frontier.param_dicts))]
else:
arm_names = [f"Arm {name}" for name in frontier.arm_names]
if CI_level is not None:
Z = 0.5 * norm.ppf(1 - (1 - CI_level) / 2)
else:
Z = None
labels = []
for i, param_dict in enumerate(frontier.param_dicts):
label = f"<b>{arm_names[i]}</b><br>"
for metric in all_metrics:
metric_lab = _make_label(
mean=frontier.means[metric][i],
sem=frontier.sems[metric][i],
name=metric,
is_relative=metric not in absolute_metrics,
Z=Z,
)
label += metric_lab
parameterization = (
_format_dict(param_dict, "Parameterization")
if show_parameterization_on_hover
else ""
)
label += parameterization
labels.append(label)
return go.Scatter(
name=legend_label,
legendgroup=legend_label,
x=secondary_means,
y=primary_means,
error_x={
"type": "data",
"array": Z * np.array(secondary_sems),
"thickness": 2,
"color": rgba(trace_color, CI_OPACITY),
},
error_y={
"type": "data",
"array": Z * np.array(primary_sems),
"thickness": 2,
"color": rgba(trace_color, CI_OPACITY),
},
mode="markers",
text=labels,
hoverinfo="text",
marker={"color": rgba(trace_color)},
)
[docs]def plot_pareto_frontier(
frontier: ParetoFrontierResults,
CI_level: float = DEFAULT_CI_LEVEL,
show_parameterization_on_hover: bool = True,
) -> AxPlotConfig:
"""Plot a Pareto frontier from a ParetoFrontierResults object.
Args:
frontier (ParetoFrontierResults): The results of the Pareto frontier
computation.
CI_level (float, optional): The confidence level, i.e. 0.95 (95%)
show_parameterization_on_hover (bool, optional): If True, show the
parameterization of the points on the frontier on hover.
Returns:
AEPlotConfig: The resulting Plotly plot definition.
"""
trace = _get_single_pareto_trace(
frontier=frontier,
CI_level=CI_level,
show_parameterization_on_hover=show_parameterization_on_hover,
)
shapes = []
primary_threshold = None
secondary_threshold = None
if frontier.objective_thresholds is not None:
primary_threshold = frontier.objective_thresholds.get(
frontier.primary_metric, None
)
secondary_threshold = frontier.objective_thresholds.get(
frontier.secondary_metric, None
)
absolute_metrics = frontier.absolute_metrics
rel_x = frontier.secondary_metric not in absolute_metrics
rel_y = frontier.primary_metric not in absolute_metrics
if primary_threshold is not None:
shapes.append(
{
"type": "line",
"xref": "paper",
"x0": 0.0,
"x1": 1.0,
"yref": "y",
"y0": primary_threshold,
"y1": primary_threshold,
"line": {"color": rgba(COLORS.CORAL.value), "width": 3},
}
)
if secondary_threshold is not None:
shapes.append(
{
"type": "line",
"yref": "paper",
"y0": 0.0,
"y1": 1.0,
"xref": "x",
"x0": secondary_threshold,
"x1": secondary_threshold,
"line": {"color": rgba(COLORS.CORAL.value), "width": 3},
}
)
layout = go.Layout(
title="Pareto Frontier",
xaxis={
"title": frontier.secondary_metric,
"ticksuffix": "%" if rel_x else "",
"zeroline": True,
},
yaxis={
"title": frontier.primary_metric,
"ticksuffix": "%" if rel_y else "",
"zeroline": True,
},
hovermode="closest",
legend={"orientation": "h"},
width=750,
height=500,
margin=go.layout.Margin(pad=4, l=225, b=75, t=75), # noqa E741
shapes=shapes,
)
fig = go.Figure(data=[trace], layout=layout)
return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC)
[docs]def plot_multiple_pareto_frontiers(
frontiers: Dict[str, ParetoFrontierResults],
CI_level: float = DEFAULT_CI_LEVEL,
show_parameterization_on_hover: bool = True,
) -> AxPlotConfig:
"""Plot a Pareto frontier from a ParetoFrontierResults object.
Args:
frontiers (Dict[str, ParetoFrontierResults]): The results of
the Pareto frontier computation.
CI_level (float, optional): The confidence level, i.e. 0.95 (95%)
show_parameterization_on_hover (bool, optional): If True, show the
parameterization of the points on the frontier on hover.
Returns:
AEPlotConfig: The resulting Plotly plot definition.
"""
first_frontier = list(frontiers.values())[0]
traces = []
for i, (method, frontier) in enumerate(frontiers.items()):
# Check the two metrics are the same as the first frontier
if (
frontier.primary_metric != first_frontier.primary_metric
or frontier.secondary_metric != first_frontier.secondary_metric
):
raise ValueError("All frontiers should have the same pairs of metrics.")
trace = _get_single_pareto_trace(
frontier=frontier,
legend_label=method,
trace_color=DISCRETE_COLOR_SCALE[i % len(DISCRETE_COLOR_SCALE)],
CI_level=CI_level,
show_parameterization_on_hover=show_parameterization_on_hover,
)
traces.append(trace)
shapes = []
primary_threshold = None
secondary_threshold = None
if frontier.objective_thresholds is not None:
primary_threshold = frontier.objective_thresholds.get(
frontier.primary_metric, None
)
secondary_threshold = frontier.objective_thresholds.get(
frontier.secondary_metric, None
)
absolute_metrics = frontier.absolute_metrics
rel_x = frontier.secondary_metric not in absolute_metrics
rel_y = frontier.primary_metric not in absolute_metrics
if primary_threshold is not None:
shapes.append(
{
"type": "line",
"xref": "paper",
"x0": 0.0,
"x1": 1.0,
"yref": "y",
"y0": primary_threshold,
"y1": primary_threshold,
"line": {"color": rgba(COLORS.CORAL.value), "width": 3},
}
)
if secondary_threshold is not None:
shapes.append(
{
"type": "line",
"yref": "paper",
"y0": 0.0,
"y1": 1.0,
"xref": "x",
"x0": secondary_threshold,
"x1": secondary_threshold,
"line": {"color": rgba(COLORS.CORAL.value), "width": 3},
}
)
layout = go.Layout(
title="Pareto Frontier",
xaxis={
"title": frontier.secondary_metric,
"ticksuffix": "%" if rel_x else "",
"zeroline": True,
},
yaxis={
"title": frontier.primary_metric,
"ticksuffix": "%" if rel_y else "",
"zeroline": True,
},
hovermode="closest",
legend={
"orientation": "h",
"yanchor": "top",
"y": -0.20,
"xanchor": "auto",
"x": 0.075,
},
width=750,
height=550,
margin=go.layout.Margin(pad=4, l=225, b=125, t=75), # noqa E741
shapes=shapes,
)
fig = go.Figure(data=traces, layout=layout)
return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC)
[docs]def interact_pareto_frontier(
frontier_list: List[ParetoFrontierResults],
CI_level: float = DEFAULT_CI_LEVEL,
show_parameterization_on_hover: bool = True,
) -> AxPlotConfig:
"""Plot a pareto frontier from a list of objects"""
if not frontier_list:
raise ValueError("Must receive a non-empty list of pareto frontiers to plot.")
traces = []
shapes = []
for frontier in frontier_list:
config = plot_pareto_frontier(
frontier=frontier,
CI_level=CI_level,
show_parameterization_on_hover=show_parameterization_on_hover,
)
traces.append(config.data["data"][0])
shapes.append(config.data["layout"].get("shapes", []))
for i, trace in enumerate(traces):
if i == 0: # Only the first trace is initially set to visible
trace["visible"] = True
else: # All other plot traces are not visible initially
trace["visible"] = False
# TODO (jej): replace dropdown with two dropdowns, one for x one for y.
dropdown = []
for i, frontier in enumerate(frontier_list):
trace_cnt = 1
# Only one plot trace is visible at a given time.
visible = [False] * (len(frontier_list) * trace_cnt)
for j in range(i * trace_cnt, (i + 1) * trace_cnt):
visible[j] = True
rel_y = frontier.primary_metric not in frontier.absolute_metrics
rel_x = frontier.secondary_metric not in frontier.absolute_metrics
primary_metric = frontier.primary_metric
secondary_metric = frontier.secondary_metric
dropdown.append(
{
"method": "update",
"args": [
{"visible": visible, "method": "restyle"},
{
"yaxis.title": primary_metric,
"xaxis.title": secondary_metric,
"yaxis.ticksuffix": "%" if rel_y else "",
"xaxis.ticksuffix": "%" if rel_x else "",
"shapes": shapes[i],
},
],
"label": f"{primary_metric} vs {secondary_metric}",
}
)
# Set initial layout arguments.
initial_frontier = frontier_list[0]
rel_x = initial_frontier.secondary_metric not in initial_frontier.absolute_metrics
rel_y = initial_frontier.primary_metric not in initial_frontier.absolute_metrics
secondary_metric = initial_frontier.secondary_metric
primary_metric = initial_frontier.primary_metric
layout = go.Layout(
title="Pareto Frontier",
xaxis={
"title": secondary_metric,
"ticksuffix": "%" if rel_x else "",
"zeroline": True,
},
yaxis={
"title": primary_metric,
"ticksuffix": "%" if rel_y else "",
"zeroline": True,
},
updatemenus=[
{
"buttons": dropdown,
"x": 0.075,
"xanchor": "left",
"y": 1.1,
"yanchor": "middle",
}
],
hovermode="closest",
legend={"orientation": "h"},
width=750,
height=500,
margin=go.layout.Margin(pad=4, l=225, b=75, t=75), # noqa E741
shapes=shapes[0],
)
fig = go.Figure(data=traces, layout=layout)
return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC)
[docs]def interact_multiple_pareto_frontier(
frontier_lists: Dict[str, List[ParetoFrontierResults]],
CI_level: float = DEFAULT_CI_LEVEL,
show_parameterization_on_hover: bool = True,
) -> AxPlotConfig:
"""Plot a Pareto frontiers from a list of lists of NamedParetoFrontierResults objects
that we want to compare.
Args:
frontier_lists (Dict[List[ParetoFrontierResults]]): A dictionary of multiple
lists of Pareto frontier computation results to plot for comparison.
Each list of ParetoFrontierResults contains a list of the results of
the same pareto frontier but under different pairs of metrics.
Different List[ParetoFrontierResults] must contain the the same pairs
of metrics for this function to work.
CI_level (float, optional): The confidence level, i.e. 0.95 (95%)
show_parameterization_on_hover (bool, optional): If True, show the
parameterization of the points on the frontier on hover.
Returns:
AEPlotConfig: The resulting Plotly plot definition.
"""
if not frontier_lists:
raise ValueError("Must receive a non-empty list of pareto frontiers to plot.")
# Check all the lists have the same length
vals = frontier_lists.values()
length = len(frontier_lists[next(iter(frontier_lists))])
if not all(len(item) == length for item in vals):
raise ValueError("Not all lists in frontier_lists have the same length.")
# Transform the frontier_lists to lists of frontiers where each list
# corresponds to one pair of metrics with multiple frontiers
list_of_frontiers = [
dict(zip(frontier_lists.keys(), t)) for t in zip(*frontier_lists.values())
]
# Get the traces and shapes for plotting
traces = []
shapes = []
for frontiers in list_of_frontiers:
config = plot_multiple_pareto_frontiers(
frontiers=frontiers,
CI_level=CI_level,
show_parameterization_on_hover=show_parameterization_on_hover,
)
for i in range(len(config.data["data"])):
traces.append(config.data["data"][i])
shapes.append(config.data["layout"].get("shapes", []))
num_frontiers = len(frontier_lists)
num_metric_pairs = len(list_of_frontiers)
for i, trace in enumerate(traces):
if (
i < num_frontiers
): # Only the traces for metric 1 v.s. metric 2 are initially set to visible
trace["visible"] = True
else: # All other plot traces are not visible initially
trace["visible"] = False
dropdown = []
for i, frontiers in enumerate(list_of_frontiers):
# Only plot traces for the current pair of metrics are visible at a given time.
visible = [False] * (num_metric_pairs * num_frontiers)
for j in range(i * num_frontiers, (i + 1) * num_frontiers):
visible[j] = True
# Get the first frontier for reference of metric names
first_frontier = list(frontiers.values())[0]
rel_y = first_frontier.primary_metric not in first_frontier.absolute_metrics
rel_x = first_frontier.secondary_metric not in first_frontier.absolute_metrics
primary_metric = first_frontier.primary_metric
secondary_metric = first_frontier.secondary_metric
dropdown.append(
{
"method": "update",
"args": [
{"visible": visible, "method": "restyle"},
{
"yaxis.title": primary_metric,
"xaxis.title": secondary_metric,
"yaxis.ticksuffix": "%" if rel_y else "",
"xaxis.ticksuffix": "%" if rel_x else "",
"shapes": shapes[i],
},
],
"label": f"{primary_metric} vs {secondary_metric}",
}
)
# Set initial layout arguments.
initial_first_frontier = list(list_of_frontiers[0].values())[0]
rel_x = (
initial_first_frontier.secondary_metric
not in initial_first_frontier.absolute_metrics
)
rel_y = (
initial_first_frontier.primary_metric
not in initial_first_frontier.absolute_metrics
)
secondary_metric = initial_first_frontier.secondary_metric
primary_metric = initial_first_frontier.primary_metric
layout = go.Layout(
title="Pareto Frontier",
xaxis={
"title": secondary_metric,
"ticksuffix": "%" if rel_x else "",
"zeroline": True,
},
yaxis={
"title": primary_metric,
"ticksuffix": "%" if rel_y else "",
"zeroline": True,
},
updatemenus=[
{
"buttons": dropdown,
"x": 0.075,
"xanchor": "left",
"y": 1.1,
"yanchor": "middle",
}
],
hovermode="closest",
legend={
"orientation": "h",
"yanchor": "top",
"y": -0.20,
"xanchor": "auto",
"x": 0.075,
},
showlegend=True,
width=750,
height=550,
margin=go.layout.Margin(pad=4, l=225, b=125, t=75), # noqa E741
shapes=shapes[0],
)
fig = go.Figure(data=traces, layout=layout)
return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC)
def _pareto_frontier_plot_input_processing(
experiment: Experiment,
metric_names: Optional[Tuple[str, str]] = None,
reference_point: Optional[Tuple[float, float]] = None,
minimize: Optional[Union[bool, Tuple[bool, bool]]] = None,
) -> Tuple[Tuple[str, str], Optional[Tuple[float, float]], Optional[Tuple[bool, bool]]]:
"""Processes inputs for Pareto frontier + scatterplot.
Args:
experiment: An Ax experiment.
metric_names: The names of two metrics to be plotted. Defaults to the metrics
in the optimization_config.
reference_point: The 2-dimensional reference point to use when plotting the
Pareto frontier. Defaults to the value of the objective thresholds of each
variable.
minimize: Whether each metric is being minimized. Defaults to the direction
specified for each variable in the optimization config.
Returns:
metric_names: The names of two metrics to be plotted.
reference_point: The 2-dimensional reference point to use when plotting the
Pareto frontier.
minimize: Whether each metric is being minimized.
"""
optimization_config = _validate_experiment_and_get_optimization_config(
experiment=experiment,
metric_names=metric_names,
reference_point=reference_point,
)
metric_names = _validate_and_maybe_get_default_metric_names(
metric_names=metric_names, optimization_config=optimization_config
)
objective_thresholds = _validate_experiment_and_maybe_get_objective_thresholds(
optimization_config=optimization_config,
metric_names=metric_names,
reference_point=reference_point,
)
reference_point = _validate_and_maybe_get_default_reference_point(
reference_point=reference_point,
objective_thresholds=objective_thresholds,
metric_names=metric_names,
)
minimize_output = _validate_and_maybe_get_default_minimize(
minimize=minimize,
objective_thresholds=objective_thresholds,
metric_names=metric_names,
optimization_config=optimization_config,
)
return metric_names, reference_point, minimize_output
def _validate_experiment_and_get_optimization_config(
experiment: Experiment,
metric_names: Optional[Tuple[str, str]] = None,
reference_point: Optional[Tuple[float, float]] = None,
minimize: Optional[Union[bool, Tuple[bool, bool]]] = None,
) -> Optional[OptimizationConfig]:
# If `optimization_config` is unspecified, check what inputs are missing and
# error/warn accordingly
if experiment.optimization_config is None:
if metric_names is None:
raise UserInputError(
"Inference of defaults failed. Please either specify `metric_names` "
"(and optionally `minimize` and `reference_point`) or provide an "
"experiment with an `optimization_config`."
)
if reference_point is None or minimize is None:
warnings.warn(
"Inference of defaults failed. Please specify `minimize` and "
"`reference_point` if available, or provide an experiment with an "
"`optimization_config` that contains an `objective` and "
"`objective_threshold` corresponding to each of `metric_names`: "
f"{metric_names}."
)
return None
return not_none(experiment.optimization_config)
def _validate_and_maybe_get_default_metric_names(
metric_names: Optional[Tuple[str, str]],
optimization_config: Optional[OptimizationConfig],
) -> Tuple[str, str]:
# Default metric_names is all metrics, producing an error if more than 2
if metric_names is None:
if not_none(optimization_config).is_moo_problem:
multi_objective = checked_cast(
MultiObjective, not_none(optimization_config).objective
)
metric_names = tuple(obj.metric.name for obj in multi_objective.objectives)
else:
raise UserInputError(
"Inference of `metric_names` failed. Expected `MultiObjective` but "
f"got {not_none(optimization_config).objective}. Please specify "
"`metric_names` of length 2 or provide an experiment whose "
"`optimization_config` has 2 objective metrics."
)
if metric_names is not None and len(metric_names) == 2:
return metric_names
raise UserInputError(
f"Expected 2 metrics but got {len(metric_names or [])}: {metric_names}. "
"Please specify `metric_names` of length 2 or provide an experiment whose "
"`optimization_config` has 2 objective metrics."
)
def _validate_experiment_and_maybe_get_objective_thresholds(
optimization_config: Optional[OptimizationConfig],
metric_names: Tuple[str, str],
reference_point: Optional[Tuple[float, float]],
) -> List[ObjectiveThreshold]:
objective_thresholds = []
# Validate `objective_thresholds` if `reference_point` is unspecified.
if reference_point is None:
objective_thresholds = checked_cast(
MultiObjectiveOptimizationConfig, optimization_config
).objective_thresholds
constraint_metric_names = {
objective_threshold.metric.name
for objective_threshold in objective_thresholds
}
missing_metric_names = set(metric_names) - set(constraint_metric_names)
if len(objective_thresholds) != len(metric_names) or missing_metric_names:
warnings.warn(
"For automatic inference of reference point, expected one "
"`objective_threshold` for each metric in `metric_names`: "
f"{metric_names}. Got {len(objective_thresholds)}: "
f"{objective_thresholds}. Please specify `reference_point` or provide "
"an experiment whose `optimization_config` contains one "
"objective threshold for each metric. Returning an empty list."
)
return objective_thresholds
def _validate_and_maybe_get_default_reference_point(
reference_point: Optional[Tuple[float, float]],
objective_thresholds: List[ObjectiveThreshold],
metric_names: Tuple[str, str],
) -> Optional[Tuple[float, float]]:
if reference_point is None:
reference_point = {
objective_threshold.metric.name: objective_threshold.bound
for objective_threshold in objective_thresholds
}
missing_metric_names = set(metric_names) - set(reference_point)
if missing_metric_names:
warnings.warn(
"Automated determination of `reference_point` failed: missing metrics "
f"{missing_metric_names}. Please specify `reference_point` or provide "
"an experiment whose `optimization_config` has one "
"`objective_threshold` for each of two metrics. Returning `None`."
)
return None
reference_point = tuple(
reference_point[metric_name] for metric_name in metric_names
)
if len(reference_point) != 2:
warnings.warn(
f"Expected 2-dimensional `reference_point` but got {len(reference_point)} "
f"dimensions: {reference_point}. Please specify `reference_point` of "
"length 2 or provide an experiment whose optimization config has one "
"`objective_threshold` for each of two metrics. Returning `None`."
)
return None
return reference_point
def _validate_and_maybe_get_default_minimize(
minimize: Optional[Union[bool, Tuple[bool, bool]]],
objective_thresholds: List[ObjectiveThreshold],
metric_names: Tuple[str, str],
optimization_config: Optional[OptimizationConfig] = None,
) -> Optional[Tuple[bool, bool]]:
if minimize is None:
# Determine `minimize` defaults
minimize = tuple(
_maybe_get_default_minimize_single_metric(
metric_name=metric_name,
optimization_config=optimization_config,
objective_thresholds=objective_thresholds,
)
for metric_name in metric_names
)
# If either value of minimize is missing, return `None`
if any(i_min is None for i_min in minimize):
warnings.warn(
"Extraction of default `minimize` failed. Please specify `minimize` "
"of length 2 or provide an experiment whose `optimization_config` "
"includes 2 objectives. Returning None."
)
return None
minimize = tuple(not_none(i_min) for i_min in minimize)
# If only one bool provided, use for both dimensions
elif isinstance(minimize, bool):
minimize = (minimize, minimize)
if len(minimize) != 2:
warnings.warn(
f"Expected 2-dimensional `minimize` but got {len(minimize)} dimensions: "
f"{minimize}. Please specify `minimize` of length 2 or provide an "
"experiment whose `optimization_config` includes 2 objectives. Returning "
"None."
)
return None
return minimize
def _maybe_get_default_minimize_single_metric(
metric_name: str,
objective_thresholds: List[ObjectiveThreshold],
optimization_config: Optional[OptimizationConfig] = None,
) -> Optional[bool]:
minimize = None
# First try to get metric_name from optimization_config
if (
optimization_config is not None
and metric_name in optimization_config.objective.metric_names
):
if optimization_config.is_moo_problem:
multi_objective = checked_cast(
MultiObjective, optimization_config.objective
)
for objective in multi_objective.objectives:
if objective.metric.name == metric_name:
return objective.minimize
else:
return optimization_config.objective.minimize
# Next try to get minimize from objective_thresholds
if objective_thresholds is not None:
constraint_op_names = {
objective_threshold.op.name for objective_threshold in objective_thresholds
}
invalid_constraint_op_names = constraint_op_names - VALID_CONSTRAINT_OP_NAMES
if invalid_constraint_op_names:
raise ValueError(
"Operators of all constraints must be in "
f"{VALID_CONSTRAINT_OP_NAMES}. Got {invalid_constraint_op_names}.)"
)
minimize = {
objective_threshold.metric.name: objective_threshold.op.name == "LEQ"
for objective_threshold in objective_thresholds
}
minimize = minimize.get(metric_name)
if minimize is None:
warnings.warn(
f"Extraction of default `minimize` failed for metric {metric_name}. "
f"Ensure {metric_name} is an objective of the provided experiment. "
"Setting `minimize` to `None`."
)
return minimize