Source code for ax.models.torch.botorch_modular.multi_fidelity
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, List, Optional, Tuple
from ax.core.search_space import SearchSpaceDigest
from ax.models.torch.botorch_modular.acquisition import Acquisition
from ax.models.torch.botorch_modular.surrogate import Surrogate
from ax.utils.common.constants import Keys
from botorch.acquisition.cost_aware import InverseCostWeightedUtility
from botorch.acquisition.utils import (
expand_trace_observations,
project_to_target_fidelity,
)
from botorch.models.cost import AffineFidelityCostModel
from torch import Tensor
[docs]class MultiFidelityAcquisition(Acquisition):
# NOTE: Here, we do not consider using `IIDNormalSampler` and always
# use the `SobolQMCNormalSampler`.
[docs] def compute_model_dependencies(
self,
surrogate: Surrogate,
search_space_digest: SearchSpaceDigest,
objective_weights: Tensor,
pending_observations: Optional[List[Tensor]] = None,
outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None,
linear_constraints: Optional[Tuple[Tensor, Tensor]] = None,
fixed_features: Optional[Dict[int, float]] = None,
options: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
target_fidelities = search_space_digest.target_fidelities
if not target_fidelities:
raise ValueError( # pragma: no cover
"Target fidelities are required for {self.__class__.__name__}."
)
dependencies = super().compute_model_dependencies(
surrogate=surrogate,
search_space_digest=search_space_digest,
objective_weights=objective_weights,
pending_observations=pending_observations,
outcome_constraints=outcome_constraints,
linear_constraints=linear_constraints,
fixed_features=fixed_features,
options=options,
)
options = options or {}
fidelity_weights = options.get(Keys.FIDELITY_WEIGHTS, None)
if fidelity_weights is None:
fidelity_weights = {f: 1.0 for f in target_fidelities}
if not set(target_fidelities) == set(fidelity_weights):
raise RuntimeError(
"Must provide the same indices for target_fidelities "
f"({set(target_fidelities)}) and fidelity_weights "
f" ({set(fidelity_weights)})."
)
cost_intercept = options.get(Keys.COST_INTERCEPT, 1.0)
cost_model = AffineFidelityCostModel(
fidelity_weights=fidelity_weights, fixed_cost=cost_intercept
)
cost_aware_utility = InverseCostWeightedUtility(cost_model=cost_model)
def project(X: Tensor) -> Tensor:
return project_to_target_fidelity(X=X, target_fidelities=target_fidelities)
def expand(X: Tensor) -> Tensor:
return expand_trace_observations(
X=X,
fidelity_dims=sorted(target_fidelities),
# pyre-fixme[16]: `Optional` has no attribute `get`.
num_trace_obs=options.get(Keys.NUM_TRACE_OBSERVATIONS, 0),
)
dependencies.update(
{
Keys.COST_AWARE_UTILITY: cost_aware_utility,
Keys.PROJECT: project,
Keys.EXPAND: expand,
}
)
return dependencies