Source code for ax.modelbridge.transforms.log
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import TYPE_CHECKING, List, Optional, Set
from ax.core.observation import ObservationData, ObservationFeatures
from ax.core.parameter import ParameterType, RangeParameter
from ax.core.search_space import SearchSpace
from ax.modelbridge.transforms.base import Transform
from ax.models.types import TConfig
if TYPE_CHECKING:
# import as module to make sphinx-autodoc-typehints happy
from ax import modelbridge as modelbridge_module # noqa F401 # pragma: no cover
[docs]class Log(Transform):
"""Apply log base 10 to a float RangeParameter domain.
Transform is done in-place.
"""
def __init__(
self,
search_space: SearchSpace,
observation_features: List[ObservationFeatures],
observation_data: List[ObservationData],
modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None,
config: Optional[TConfig] = None,
) -> None:
# Identify parameters that should be transformed
self.transform_parameters: Set[str] = {
p_name
for p_name, p in search_space.parameters.items()
if isinstance(p, RangeParameter)
and p.parameter_type == ParameterType.FLOAT
and p.log_scale is True
}
[docs] def transform_observation_features(
self, observation_features: List[ObservationFeatures]
) -> List[ObservationFeatures]:
for obsf in observation_features:
for p_name in self.transform_parameters:
if p_name in obsf.parameters:
# pyre: param is declared to have type `float` but is used
# pyre-fixme[9]: as type `Optional[typing.Union[bool, float, str]]`.
param: float = obsf.parameters[p_name]
obsf.parameters[p_name] = math.log10(param)
return observation_features
[docs] def transform_search_space(self, search_space: SearchSpace) -> SearchSpace:
for p_name, p in search_space.parameters.items():
if p_name in self.transform_parameters and isinstance(p, RangeParameter):
p.set_log_scale(False).update_range(
lower=math.log10(p.lower), upper=math.log10(p.upper)
)
if p.target_value is not None:
p._target_value = math.log10(p.target_value) # pyre-ignore [6]
return search_space
[docs] def untransform_observation_features(
self, observation_features: List[ObservationFeatures]
) -> List[ObservationFeatures]:
for obsf in observation_features:
for p_name in self.transform_parameters:
if p_name in obsf.parameters:
# pyre: param is declared to have type `float` but is used
# pyre-fixme[9]: as type `Optional[typing.Union[bool, float, str]]`.
param: float = obsf.parameters[p_name]
obsf.parameters[p_name] = math.pow(10, param)
return observation_features