Source code for ax.modelbridge.transforms.unit_x
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
from ax.core.observation import ObservationData, ObservationFeatures
from ax.core.parameter import ParameterType, RangeParameter
from ax.core.parameter_constraint import ParameterConstraint
from ax.core.search_space import SearchSpace
from ax.core.types import TConfig
from ax.modelbridge.transforms.base import Transform
if TYPE_CHECKING:
# import as module to make sphinx-autodoc-typehints happy
from ax import modelbridge as modelbridge_module # noqa F401 # pragma: no cover
[docs]class UnitX(Transform):
"""Map X to [0, 1]^d for RangeParameter of type float and not log scale.
Uses bounds l <= x <= u, sets x_tilde_i = (x_i - l_i) / (u_i - l_i).
Constraints wTx <= b are converted to gTx_tilde <= h, where
g_i = w_i (u_i - l_i) and h = b - wTl.
Transform is done in-place.
"""
def __init__(
self,
search_space: SearchSpace,
observation_features: List[ObservationFeatures],
observation_data: List[ObservationData],
modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None,
config: Optional[TConfig] = None,
) -> None:
# Identify parameters that should be transformed
self.bounds: Dict[str, Tuple[float, float]] = {}
for p_name, p in search_space.parameters.items():
if (
isinstance(p, RangeParameter)
and p.parameter_type == ParameterType.FLOAT
and not p.log_scale
):
self.bounds[p_name] = (p.lower, p.upper)
[docs] def transform_observation_features(
self, observation_features: List[ObservationFeatures]
) -> List[ObservationFeatures]:
for obsf in observation_features:
for p_name, (l, u) in self.bounds.items():
if p_name in obsf.parameters:
# pyre: param is declared to have type `float` but is used
# pyre-fixme[9]: as type `Optional[typing.Union[bool, float, str]]`.
param: float = obsf.parameters[p_name]
obsf.parameters[p_name] = normalize_value(param, (l, u))
return observation_features
[docs] def transform_search_space(self, search_space: SearchSpace) -> SearchSpace:
for p_name, p in search_space.parameters.items():
if p_name in self.bounds and isinstance(p, RangeParameter):
p.update_range(
lower=normalize_value(p.lower, self.bounds[p_name]),
upper=normalize_value(p.upper, self.bounds[p_name]),
)
if p.target_value is not None:
p._target_value = normalize_value(
p.target_value, self.bounds[p_name] # pyre-ignore[6]
)
new_constraints: List[ParameterConstraint] = []
for c in search_space.parameter_constraints:
constraint_dict: Dict[str, float] = {}
bound = float(c.bound)
for p_name, w in c.constraint_dict.items():
# p is RangeParameter, but may not be transformed (Int or log)
if p_name in self.bounds:
l, u = self.bounds[p_name]
constraint_dict[p_name] = w * (u - l)
bound -= w * l
else:
constraint_dict[p_name] = w
new_constraints.append(
ParameterConstraint(constraint_dict=constraint_dict, bound=bound)
)
search_space.set_parameter_constraints(new_constraints)
return search_space
[docs] def untransform_observation_features(
self, observation_features: List[ObservationFeatures]
) -> List[ObservationFeatures]:
for obsf in observation_features:
for p_name, (l, u) in self.bounds.items():
# pyre: param is declared to have type `float` but is used as
# pyre-fixme[9]: type `Optional[typing.Union[bool, float, str]]`.
param: float = obsf.parameters[p_name]
obsf.parameters[p_name] = param * (u - l) + l
return observation_features
[docs]def normalize_value(value: float, bounds: Tuple[float, float]) -> float:
"""Transform bounds to [0,1], and apply the same transform to the value.
Note: if the value is outside of the bounds, then the value will be mapped
outside of [0,1].
"""
lower, upper = bounds
return (value - lower) / (upper - lower)