Source code for ax.modelbridge.transforms.remove_fixed
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from ax.core.observation import ObservationData, ObservationFeatures
from ax.core.parameter import ChoiceParameter, FixedParameter, RangeParameter
from ax.core.search_space import SearchSpace
from ax.core.types import TConfig
from ax.modelbridge.transforms.base import Transform
if TYPE_CHECKING:
# import as module to make sphinx-autodoc-typehints happy
from ax import modelbridge as modelbridge_module # noqa F401 # pragma: no cover
[docs]class RemoveFixed(Transform):
"""Remove fixed parameters.
Fixed parameters should not be included in the SearchSpace.
This transform removes these parameters, leaving only tunable parameters.
Transform is done in-place.
"""
def __init__(
self,
search_space: SearchSpace,
observation_features: List[ObservationFeatures],
observation_data: List[ObservationData],
modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None,
config: Optional[TConfig] = None,
) -> None:
# Identify parameters that should be transformed
self.fixed_parameters: Dict[str, FixedParameter] = {
p_name: p
for p_name, p in search_space.parameters.items()
if isinstance(p, FixedParameter)
}
[docs] def transform_observation_features(
self, observation_features: List[ObservationFeatures]
) -> List[ObservationFeatures]:
for obsf in observation_features:
for p_name, fixed_p in self.fixed_parameters.items():
if p_name in obsf.parameters:
if obsf.parameters[p_name] != fixed_p.value:
raise ValueError(
f"Fixed parameter {p_name} with out of design value: "
f"{obsf.parameters[p_name]} passed to `RemoveFixed`."
)
obsf.parameters.pop(p_name)
return observation_features
[docs] def transform_search_space(self, search_space: SearchSpace) -> SearchSpace:
tunable_parameters: List[Union[ChoiceParameter, RangeParameter]] = []
for p in search_space.parameters.values():
if p.name not in self.fixed_parameters:
# If it's not in fixed_parameters, it must be a tunable param.
# pyre: p_ is declared to have type `Union[ChoiceParameter,
# pyre: RangeParameter]` but is used as type `ax.core.
# pyre-fixme[9]: parameter.Parameter`.
p_: Union[ChoiceParameter, RangeParameter] = p
tunable_parameters.append(p_)
return SearchSpace(
# Expected `List[ax.core.parameter.Parameter]` for 2nd parameter
# `parameters` to call `ax.core.search_space.SearchSpace.__init__`
# but got `List[Union[ChoiceParameter, RangeParameter]]`.
# pyre-fixme[6]:
parameters=tunable_parameters,
parameter_constraints=[
pc.clone() for pc in search_space.parameter_constraints
],
)
[docs] def untransform_observation_features(
self, observation_features: List[ObservationFeatures]
) -> List[ObservationFeatures]:
for obsf in observation_features:
for p_name, p in self.fixed_parameters.items():
obsf.parameters[p_name] = p.value
return observation_features