Source code for ax.modelbridge.transforms.one_hot

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import TYPE_CHECKING, Dict, List, Optional, TypeVar

import numpy as np
from ax.core.observation import ObservationData, ObservationFeatures
from ax.core.parameter import ChoiceParameter, Parameter, ParameterType, RangeParameter
from ax.core.search_space import SearchSpace
from ax.core.types import TConfig, TParameterization
from ax.modelbridge.transforms.base import Transform
from ax.modelbridge.transforms.rounding import (
    randomized_onehot_round,
    strict_onehot_round,
)
from sklearn.preprocessing import LabelBinarizer, LabelEncoder

if TYPE_CHECKING:
    # import as module to make sphinx-autodoc-typehints happy
    from ax import modelbridge as modelbridge_module  # noqa F401  # pragma: no cover


OH_PARAM_INFIX = "_OH_PARAM_"
T = TypeVar("T")


[docs]class OneHotEncoder: """Joins the two encoders needed for OneHot transform.""" int_encoder: LabelEncoder label_binarizer: LabelBinarizer def __init__(self, values: List[T]) -> None: self.int_encoder = LabelEncoder().fit(values) self.label_binarizer = LabelBinarizer().fit(self.int_encoder.transform(values))
[docs] def transform(self, labels: List[T]) -> np.ndarray: """One hot encode a list of labels.""" return self.label_binarizer.transform(self.int_encoder.transform(labels))
[docs] def inverse_transform(self, encoded_labels: List[T]) -> List[T]: """Inverse transorm a list of one hot encoded labels.""" return self.int_encoder.inverse_transform( self.label_binarizer.inverse_transform(encoded_labels) )
@property def classes(self) -> np.ndarray: """Return number of classes discovered while fitting transform.""" # pyre-fixme[16]: `LabelBinarizer` has no attribute `classes_`. return self.label_binarizer.classes_
[docs]class OneHot(Transform): """Convert categorical parameters (unordered ChoiceParameters) to one-hot-encoded parameters. Does not convert task parameters. Parameters will be one-hot-encoded, yielding a set of RangeParameters, of type float, on [0, 1]. If there are two values, one single RangeParameter will be yielded, otherwise there will be a new RangeParameter for each ChoiceParameter value. In the reverse transform, floats can be converted to a one-hot encoded vector using one of two methods: Strict rounding: Choose the maximum value. With levels ['a', 'b', 'c'] and float values [0.2, 0.4, 0.3], the restored parameter would be set to 'b'. Ties are broken randomly, so values [0.2, 0.4, 0.4] is randomly set to 'b' or 'c'. Randomized rounding: Sample from the distribution. Float values [0.2, 0.4, 0.3] are transformed to 'a' w.p. 0.2/0.9, 'b' w.p. 0.4/0.9, or 'c' w.p. 0.3/0.9. Type of rounding can be set using transform_config['rounding'] to either 'strict' or 'randomized'. Defaults to strict. Transform is done in-place. """ def __init__( self, search_space: SearchSpace, observation_features: List[ObservationFeatures], observation_data: List[ObservationData], modelbridge: Optional["modelbridge_module.base.ModelBridge"] = None, config: Optional[TConfig] = None, ) -> None: # Identify parameters that should be transformed self.rounding = "strict" if config is not None: self.rounding = config.get("rounding", "strict") self.encoder: Dict[str, OneHotEncoder] = {} self.encoded_parameters: Dict[str, List[str]] = {} for p in search_space.parameters.values(): if isinstance(p, ChoiceParameter) and not p.is_ordered and not p.is_task: self.encoder[p.name] = OneHotEncoder(p.values) nc = len(self.encoder[p.name].classes) if nc == 2: # Two levels handled in one parameter self.encoded_parameters[p.name] = [p.name + OH_PARAM_INFIX] else: self.encoded_parameters[p.name] = [ "{}{}_{}".format(p.name, OH_PARAM_INFIX, i) for i in range(nc) ]
[docs] def transform_observation_features( self, observation_features: List[ObservationFeatures] ) -> List[ObservationFeatures]: for obsf in observation_features: for p_name, encoder in self.encoder.items(): if p_name in obsf.parameters: vals = encoder.transform(labels=[obsf.parameters.pop(p_name)])[0] updated_parameters: TParameterization = { self.encoded_parameters[p_name][i]: v for i, v in enumerate(vals) } obsf.parameters.update(updated_parameters) return observation_features
[docs] def transform_search_space(self, search_space: SearchSpace) -> SearchSpace: transformed_parameters: Dict[str, Parameter] = {} for p_name, p in search_space.parameters.items(): if p_name in self.encoded_parameters: if p.is_fidelity: raise ValueError( f"Cannot one-hot-encode fidelity parameter {p_name}" ) for new_p_name in self.encoded_parameters[p_name]: transformed_parameters[new_p_name] = RangeParameter( name=new_p_name, parameter_type=ParameterType.FLOAT, lower=0, upper=1, ) else: transformed_parameters[p_name] = p return SearchSpace( parameters=list(transformed_parameters.values()), parameter_constraints=[ pc.clone_with_transformed_parameters( transformed_parameters=transformed_parameters ) for pc in search_space.parameter_constraints ], )
[docs] def untransform_observation_features( self, observation_features: List[ObservationFeatures] ) -> List[ObservationFeatures]: for obsf in observation_features: for p_name in self.encoder.keys(): x = np.array( [obsf.parameters.pop(p) for p in self.encoded_parameters[p_name]] ) if self.rounding == "strict": x = strict_onehot_round(x) else: x = randomized_onehot_round(x) val = self.encoder[p_name].inverse_transform(encoded_labels=x[None, :])[ 0 ] if isinstance(val, np.str_): val = str(val) if isinstance(val, np.bool_): val = bool(val) # Numpy bools don't serialize obsf.parameters[p_name] = val return observation_features