Source code for ax.modelbridge.array

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Set, Tuple

import numpy as np
from ax.core.arm import Arm
from ax.core.generator_run import extract_arm_predictions
from ax.core.observation import ObservationData, ObservationFeatures
from ax.core.optimization_config import (
    OptimizationConfig,
)
from ax.core.outcome_constraint import ScalarizedOutcomeConstraint
from ax.core.search_space import SearchSpace
from ax.core.types import TModelPredictArm, TCandidateMetadata, TConfig, TGenMetadata
from ax.modelbridge.base import gen_arms, ModelBridge
from ax.modelbridge.modelbridge_utils import (
    array_to_observation_data,
    extract_objective_weights,
    extract_outcome_constraints,
    extract_parameter_constraints,
    extract_search_space_digest,
    get_fixed_features,
    observation_data_to_array,
    observation_features_to_array,
    parse_observation_features,
    pending_observations_as_array,
    transform_callback,
    SearchSpaceDigest,
)
from ax.utils.common.typeutils import not_none


FIT_MODEL_ERROR = "Model must be fit before {action}."


[docs]@dataclass class ArrayModelGenArgs: search_space_digest: SearchSpaceDigest objective_weights: np.ndarray outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]] linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]] fixed_features: Optional[Dict[int, float]] pending_observations: Optional[List[np.ndarray]] rounding_func: Callable[[np.ndarray], np.ndarray] extra_model_gen_kwargs: Dict[str, Any]
# pyre-fixme[13]: Attribute `model` is never initialized. # pyre-fixme[13]: Attribute `outcomes` is never initialized. # pyre-fixme[13]: Attribute `parameters` is never initialized.
[docs]class ArrayModelBridge(ModelBridge): """A model bridge for using array-based models. Requires that all non-task parameters have been transformed to RangeParameters. If there are any (non-task) discrete parameters (e.g. as obtained via a ChoiceEncode transform), those need to be of integer type with parameter space normalized to `{0, 1, ..., num_choices-1}`. The `num_choices` information is passed to the model and optimization needs to take this into account and return only candidates that take values in this parameter space (specifically, there is no relaxation and no rounding is applied). All other parameters need to be of float type on a regular (non-log) scale. This will convert all parameter types to float and put data into arrays. """ model: Any outcomes: List[str] parameters: List[str] def _fit( self, model: Any, search_space: SearchSpace, observation_features: List[ObservationFeatures], observation_data: List[ObservationData], ) -> None: # Convert observations to arrays self.parameters = list(search_space.parameters.keys()) all_metric_names: Set[str] = set() for od in observation_data: all_metric_names.update(od.metric_names) self.outcomes = sorted(all_metric_names) # Deterministic order # Convert observations to arrays Xs_array, Ys_array, Yvars_array, candidate_metadata = _convert_observations( observation_data=observation_data, observation_features=observation_features, outcomes=self.outcomes, parameters=self.parameters, ) # Get all relevant information on the parameters search_space_digest = extract_search_space_digest( search_space=search_space, param_names=self.parameters ) # Fit self._model_fit( model=model, Xs=Xs_array, Ys=Ys_array, Yvars=Yvars_array, search_space_digest=search_space_digest, metric_names=self.outcomes, candidate_metadata=candidate_metadata, ) def _model_fit( self, model: Any, Xs: List[np.ndarray], Ys: List[np.ndarray], Yvars: List[np.ndarray], search_space_digest: SearchSpaceDigest, metric_names: List[str], candidate_metadata: Optional[List[List[TCandidateMetadata]]], ) -> None: """Fit the model, given numpy types.""" self.model = model self.model.fit( Xs=Xs, Ys=Ys, Yvars=Yvars, search_space_digest=search_space_digest, metric_names=metric_names, candidate_metadata=candidate_metadata, ) def _update( self, search_space: SearchSpace, observation_features: List[ObservationFeatures], observation_data: List[ObservationData], ) -> None: """Apply terminal transform for update data, and pass along to model.""" Xs_array, Ys_array, Yvars_array, candidate_metadata = _convert_observations( observation_data=observation_data, observation_features=observation_features, outcomes=self.outcomes, parameters=self.parameters, ) search_space_digest = extract_search_space_digest( search_space=search_space, param_names=self.parameters ) # Update in-design status for these new points. self._model_update( Xs=Xs_array, Ys=Ys_array, Yvars=Yvars_array, search_space_digest=search_space_digest, metric_names=self.outcomes, candidate_metadata=candidate_metadata, ) def _model_update( self, Xs: List[np.ndarray], Ys: List[np.ndarray], Yvars: List[np.ndarray], search_space_digest: SearchSpaceDigest, metric_names: List[str], candidate_metadata: Optional[List[List[TCandidateMetadata]]], ) -> None: self.model.update( Xs=Xs, Ys=Ys, Yvars=Yvars, search_space_digest=search_space_digest, metric_names=self.outcomes, candidate_metadata=candidate_metadata, ) def _predict( self, observation_features: List[ObservationFeatures] ) -> List[ObservationData]: X = observation_features_to_array(self.parameters, observation_features) f, cov = self._model_predict(X=X) # Convert arrays to observations return array_to_observation_data(f=f, cov=cov, outcomes=self.outcomes) def _model_predict( self, X: np.ndarray ) -> Tuple[np.ndarray, np.ndarray]: # pragma: no cover return self.model.predict(X=X) def _get_extra_model_gen_kwargs( self, optimization_config: OptimizationConfig ) -> Dict[str, Any]: return {} def _get_transformed_model_gen_args( self, search_space: SearchSpace, pending_observations: Dict[str, List[ObservationFeatures]], fixed_features: ObservationFeatures, model_gen_options: Optional[TConfig] = None, optimization_config: Optional[OptimizationConfig] = None, ) -> ArrayModelGenArgs: # Validation if not self.parameters: # pragma: no cover raise ValueError(FIT_MODEL_ERROR.format(action="_gen")) # Extract search space info search_space_digest = extract_search_space_digest( search_space=search_space, param_names=self.parameters ) if optimization_config is None: raise ValueError( "ArrayModelBridge requires an OptimizationConfig to be specified" ) if self.outcomes is None or len(self.outcomes) == 0: # pragma: no cover raise ValueError("No outcomes found during model fit--data are missing.") validate_optimization_config(optimization_config, self.outcomes) objective_weights = extract_objective_weights( objective=optimization_config.objective, outcomes=self.outcomes ) outcome_constraints = extract_outcome_constraints( outcome_constraints=optimization_config.outcome_constraints, outcomes=self.outcomes, ) extra_model_gen_kwargs = self._get_extra_model_gen_kwargs( optimization_config=optimization_config ) linear_constraints = extract_parameter_constraints( search_space.parameter_constraints, self.parameters ) fixed_features_dict = get_fixed_features(fixed_features, self.parameters) pending_array = pending_observations_as_array( pending_observations, self.outcomes, self.parameters ) return ArrayModelGenArgs( search_space_digest=search_space_digest, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features_dict, pending_observations=pending_array, rounding_func=transform_callback(self.parameters, self.transforms), extra_model_gen_kwargs=extra_model_gen_kwargs, ) def _gen( self, n: int, search_space: SearchSpace, pending_observations: Dict[str, List[ObservationFeatures]], fixed_features: ObservationFeatures, model_gen_options: Optional[TConfig] = None, optimization_config: Optional[OptimizationConfig] = None, ) -> Tuple[ List[ObservationFeatures], List[float], Optional[ObservationFeatures], TGenMetadata, ]: """Generate new candidates according to search_space and optimization_config. The outcome constraints should be transformed to no longer be relative. """ array_model_gen_args = self._get_transformed_model_gen_args( search_space=search_space, pending_observations=pending_observations, fixed_features=fixed_features, model_gen_options=model_gen_options, optimization_config=optimization_config, ) # Generate the candidates search_space_digest = array_model_gen_args.search_space_digest # TODO: pass array_model_gen_args to _model_gen X, w, gen_metadata, candidate_metadata = self._model_gen( n=n, bounds=search_space_digest.bounds, objective_weights=array_model_gen_args.objective_weights, outcome_constraints=array_model_gen_args.outcome_constraints, linear_constraints=array_model_gen_args.linear_constraints, fixed_features=array_model_gen_args.fixed_features, pending_observations=array_model_gen_args.pending_observations, model_gen_options=model_gen_options, rounding_func=array_model_gen_args.rounding_func, target_fidelities=search_space_digest.target_fidelities, **array_model_gen_args.extra_model_gen_kwargs, ) # Transform array to observations observation_features = parse_observation_features( X=X, param_names=self.parameters, candidate_metadata=candidate_metadata ) xbest = self._model_best_point( bounds=search_space_digest.bounds, objective_weights=array_model_gen_args.objective_weights, outcome_constraints=array_model_gen_args.outcome_constraints, linear_constraints=array_model_gen_args.linear_constraints, fixed_features=array_model_gen_args.fixed_features, model_gen_options=model_gen_options, target_fidelities=search_space_digest.target_fidelities, ) best_obsf = ( None if xbest is None else ObservationFeatures( parameters={p: float(xbest[i]) for i, p in enumerate(self.parameters)} ) ) return observation_features, w.tolist(), best_obsf, gen_metadata def _model_gen( self, n: int, bounds: List[Tuple[float, float]], objective_weights: np.ndarray, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]], linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]], fixed_features: Optional[Dict[int, float]], pending_observations: Optional[List[np.ndarray]], model_gen_options: Optional[TConfig], rounding_func: Callable[[np.ndarray], np.ndarray], target_fidelities: Optional[Dict[int, float]] = None, ) -> Tuple[ np.ndarray, np.ndarray, TGenMetadata, List[TCandidateMetadata] ]: # pragma: no cover if target_fidelities: raise NotImplementedError( "target_fidelities not supported by ArrayModelBridge" ) return self.model.gen( n=n, bounds=bounds, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, pending_observations=pending_observations, model_gen_options=model_gen_options, rounding_func=rounding_func, )
[docs] def model_best_point( self, search_space: Optional[SearchSpace] = None, optimization_config: Optional[OptimizationConfig] = None, pending_observations: Optional[Dict[str, List[ObservationFeatures]]] = None, fixed_features: Optional[ObservationFeatures] = None, model_gen_options: Optional[TConfig] = None, ) -> Optional[Tuple[Arm, Optional[TModelPredictArm]]]: # Get modifiable versions if search_space is None: search_space = self._model_space search_space = search_space.clone() base_gen_args = self._get_transformed_gen_args( search_space=search_space, optimization_config=optimization_config, pending_observations=pending_observations, fixed_features=fixed_features, ) array_model_gen_args = self._get_transformed_model_gen_args( search_space=base_gen_args.search_space, pending_observations=base_gen_args.pending_observations, fixed_features=base_gen_args.fixed_features, model_gen_options=None, optimization_config=base_gen_args.optimization_config, ) search_space_digest = array_model_gen_args.search_space_digest xbest = self._model_best_point( bounds=search_space_digest.bounds, objective_weights=array_model_gen_args.objective_weights, outcome_constraints=array_model_gen_args.outcome_constraints, linear_constraints=array_model_gen_args.linear_constraints, fixed_features=array_model_gen_args.fixed_features, model_gen_options=model_gen_options, target_fidelities=search_space_digest.target_fidelities, ) if xbest is None: return None best_obsf = ObservationFeatures( parameters={p: float(xbest[i]) for i, p in enumerate(self.parameters)} ) for t in reversed(self.transforms.values()): # noqa T484 best_obsf = t.untransform_observation_features([best_obsf])[0] best_point_predictions = extract_arm_predictions( model_predictions=self.predict([best_obsf]), arm_idx=0 ) best_arms, _ = gen_arms( observation_features=[best_obsf], arms_by_signature=self._arms_by_signature, ) best_arm = best_arms[0] return best_arm, best_point_predictions
def _model_best_point( self, bounds: List[Tuple[float, float]], objective_weights: np.ndarray, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]], linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]], fixed_features: Optional[Dict[int, float]], model_gen_options: Optional[TConfig], target_fidelities: Optional[Dict[int, float]] = None, ) -> Optional[np.ndarray]: # pragma: no cover if target_fidelities: raise NotImplementedError( "target_fidelities not supported by ArrayModelBridge" ) try: return self.model.best_point( bounds=bounds, objective_weights=objective_weights, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, model_gen_options=model_gen_options, ) except NotImplementedError: return None def _cross_validate( self, search_space: SearchSpace, obs_feats: List[ObservationFeatures], obs_data: List[ObservationData], cv_test_points: List[ObservationFeatures], ) -> List[ObservationData]: """Make predictions at cv_test_points using only the data in obs_feats and obs_data. """ Xs_train, Ys_train, Yvars_train, candidate_metadata = _convert_observations( observation_data=obs_data, observation_features=obs_feats, outcomes=self.outcomes, parameters=self.parameters, ) search_space_digest = extract_search_space_digest( search_space=search_space, param_names=self.parameters ) X_test = np.array( [[obsf.parameters[p] for p in self.parameters] for obsf in cv_test_points] ) # Use the model to do the cross validation f_test, cov_test = self._model_cross_validate( Xs_train=Xs_train, Ys_train=Ys_train, Yvars_train=Yvars_train, X_test=X_test, search_space_digest=search_space_digest, metric_names=self.outcomes, ) # Convert array back to ObservationData return array_to_observation_data(f=f_test, cov=cov_test, outcomes=self.outcomes) def _model_cross_validate( self, Xs_train: List[np.ndarray], Ys_train: List[np.ndarray], Yvars_train: List[np.ndarray], X_test: np.ndarray, search_space_digest: SearchSpaceDigest, metric_names: List[str], ) -> Tuple[np.ndarray, np.ndarray]: # pragma: no cover return self.model.cross_validate( Xs_train=Xs_train, Ys_train=Ys_train, Yvars_train=Yvars_train, X_test=X_test, search_space_digest=search_space_digest, metric_names=metric_names, ) def _evaluate_acquisition_function( self, observation_features: List[ObservationFeatures], search_space_digest: SearchSpaceDigest, objective_weights: np.ndarray, objective_thresholds: Optional[np.ndarray] = None, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, fixed_features: Optional[Dict[int, float]] = None, pending_observations: Optional[List[np.ndarray]] = None, acq_options: Optional[Dict[str, Any]] = None, ) -> List[float]: return self._model_evaluate_acquisition_function( X=observation_features_to_array(self.parameters, observation_features), search_space_digest=search_space_digest, objective_weights=objective_weights, objective_thresholds=objective_thresholds, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, pending_observations=pending_observations, acq_options=acq_options, ).tolist() def _model_evaluate_acquisition_function( self, X: np.ndarray, search_space_digest: SearchSpaceDigest, objective_weights: np.ndarray, objective_thresholds: Optional[np.ndarray] = None, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, linear_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, fixed_features: Optional[Dict[int, float]] = None, pending_observations: Optional[List[np.ndarray]] = None, acq_options: Optional[Dict[str, Any]] = None, ) -> np.ndarray: raise NotImplementedError # pragma: no cover def _transform_callback(self, x: np.ndarray) -> np.ndarray: # pragma: no cover """A function that performs the `round trip` transformations. This function is passed to _model_gen. """ # apply reverse terminal transform to turn array to ObservationFeatures observation_features = [ ObservationFeatures( parameters={p: float(x[i]) for i, p in enumerate(self.parameters)} ) ] # reverse loop through the transforms and do untransform for t in reversed(self.transforms.values()): observation_features = t.untransform_observation_features( observation_features ) # forward loop through the transforms and do transform for t in self.transforms.values(): observation_features = t.transform_observation_features( observation_features ) new_x: List[float] = [ # pyre-fixme[6]: Expected `Union[_SupportsIndex, bytearray, bytes, str, # typing.SupportsFloat]` for 1st param but got `Union[None, bool, float, # int, str]`. float(observation_features[0].parameters[p]) for p in self.parameters ] # turn it back into an array return np.array(new_x)
[docs] def feature_importances(self, metric_name: str) -> Dict[str, float]: importances_tensor = not_none(self.model).feature_importances() importances_dict = dict(zip(self.outcomes, importances_tensor)) importances_arr = importances_dict[metric_name].flatten() return dict(zip(self.parameters, importances_arr))
def _transform_observation_data( self, observation_data: List[ObservationData] ) -> Any: # TODO(jej): Make return type parametric """Apply terminal transform to given observation data and return result. Converts a set of observation data to a tuple of - an (n x m) array of means - an (n x m x m) array of covariances """ try: return observation_data_to_array( outcomes=self.outcomes, observation_data=observation_data ) except (KeyError, TypeError): # pragma: no cover raise ValueError("Invalid formatting of observation data.") def _transform_observation_features( self, observation_features: List[ObservationFeatures] ) -> Any: # TODO(jej): Make return type parametric """Apply terminal transform to given observation features and return result as an N x D array of points. """ try: return np.array( [ # pyre-ignore[6]: Except statement below should catch wrongly # typed parameters. [float(of.parameters[p]) for p in self.parameters] for of in observation_features ] ) except (KeyError, TypeError): # pragma: no cover raise ValueError("Invalid formatting of observation features.")
def _convert_observations( observation_data: List[ObservationData], observation_features: List[ObservationFeatures], outcomes: List[str], parameters: List[str], ) -> Tuple[ List[np.ndarray], List[np.ndarray], List[np.ndarray], Optional[List[List[TCandidateMetadata]]], ]: """Converts observations to model's `fit` or `update` inputs: Xs, Ys, Yvars, and candidate metadata. NOTE: All four outputs are organized as lists over outcomes. E.g. if there are two outcomes, 'x' and 'y', the Xs are formatted like so: `[Xs_x_ndarray, Xs_y_ndarray]`. We specifically do not assume that every point is observed for every outcome. This means that the array for each of those outcomes may be different, and in particular could have a different length (e.g. if a particular arm was observed only for half of the outcomes, it would be present in half of the arrays in the list but not the other half.) """ Xs: List[List[List[float]]] = [[] for _ in outcomes] Ys: List[List[float]] = [[] for _ in outcomes] Yvars: List[List[float]] = [[] for _ in outcomes] candidate_metadata: List[List[TCandidateMetadata]] = [[] for _ in outcomes] any_candidate_metadata_is_not_none = False for i, of in enumerate(observation_features): try: x: List[float] = [ float(of.parameters[p]) for p in parameters # pyre-ignore ] except (KeyError, TypeError): raise ValueError("Out of design points cannot be converted.") for j, m in enumerate(observation_data[i].metric_names): k = outcomes.index(m) Xs[k].append(x) Ys[k].append(observation_data[i].means[j]) Yvars[k].append(observation_data[i].covariance[j, j]) if of.metadata is not None: any_candidate_metadata_is_not_none = True candidate_metadata[k].append(of.metadata) Xs_array = [np.array(x_) for x_ in Xs] Ys_array = [np.array(y_)[:, None] for y_ in Ys] Yvars_array = [np.array(var)[:, None] for var in Yvars] if not any_candidate_metadata_is_not_none: candidate_metadata = None # pyre-ignore[9]: Change of variable type. return Xs_array, Ys_array, Yvars_array, candidate_metadata
[docs]def validate_optimization_config( optimization_config: OptimizationConfig, outcomes: List[str] ) -> None: """Validate optimization config against model fitted outcomes. Args: optimization_config: Config to validate. outcomes: List of metric names w/ valid model fits. Raises: ValueError if: 1. Relative constraints are found 2. Optimization metrics are not present in model fitted outcomes. """ for c in optimization_config.outcome_constraints: if c.relative: raise ValueError(f"{c} is a relative constraint.") if isinstance(c, ScalarizedOutcomeConstraint): for c_metric in c.metrics: if c_metric.name not in outcomes: # pragma: no cover raise ValueError( f"Scalarized constraint metric component {c.metric.name} " + "not found in fitted data." ) elif c.metric.name not in outcomes: # pragma: no cover raise ValueError( f"Outcome constraint metric {c.metric.name} not found in fitted data." ) obj_metric_names = [m.name for m in optimization_config.objective.metrics] for obj_metric_name in obj_metric_names: if obj_metric_name not in outcomes: # pragma: no cover raise ValueError( f"Objective metric {obj_metric_name} not found in fitted data." )