Source code for ax.metrics.noisy_function_map
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from typing import Mapping, Iterable, Any, Optional
import numpy as np
import pandas as pd
from ax.core.base_trial import BaseTrial
from ax.core.map_data import MapKeyInfo, MapData
from ax.core.map_metric import MapMetric
from ax.utils.common.logger import get_logger
logger = get_logger(__name__)
[docs]class NoisyFunctionMapMetric(MapMetric):
"""A metric defined by a generic deterministic function, with normal noise
with mean 0 and mean_sd scale added to the result.
"""
def __init__(
self,
name: str,
param_names: Iterable[str],
map_key_infos: Iterable[MapKeyInfo],
noise_sd: float = 0.0,
lower_is_better: Optional[bool] = None,
cache_evaluations: bool = True,
) -> None:
"""
Metric is computed by evaluating a deterministic function, implemented
in f.
f will expect an array x, which is constructed from the arm
parameters by extracting the values of the parameter names given in
param_names, in that order.
Args:
name: Name of the metric
param_names: An ordered list of names of parameters to be passed
to the deterministic function.
noise_sd: Scale of normal noise added to the function result.
lower_is_better: Flag for metrics which should be minimized.
cache_evaluations: Flag for whether previous evaluations should
be cached. If so, those values are returned for previously
evaluated parameters using the same realization of the
observation noise.
"""
self.param_names = param_names
self.map_key_infos = map_key_infos
self.noise_sd = noise_sd
self.cache = {}
self.cache_evaluations = cache_evaluations
super().__init__(name=name, lower_is_better=lower_is_better)
[docs] @classmethod
def is_available_while_running(cls) -> bool:
return True
[docs] @classmethod
def overwrite_existing_data(cls) -> bool:
return True
[docs] def clone(self) -> NoisyFunctionMapMetric:
return self.__class__(
name=self._name,
param_names=self.param_names,
map_key_infos=self.map_key_infos,
noise_sd=self.noise_sd,
lower_is_better=self.lower_is_better,
cache_evaluations=self.cache_evaluations,
)
[docs] def fetch_trial_data(
self, trial: BaseTrial, noisy: bool = True, **kwargs: Any
) -> MapData:
res = [
self.f(np.fromiter(arm.parameters.values(), dtype=float))
for arm in trial.arms
]
df = pd.DataFrame(
{
"arm_name": [arm.name for arm in trial.arms],
"metric_name": self.name,
"sem": self.noise_sd if noisy else 0.0,
"trial_index": trial.index,
"mean": [item["mean"] for item in res],
**{
mki.key: [item[mki.key] for item in res]
for mki in self.map_key_infos
},
}
)
return MapData(df=df, map_key_infos=self.map_key_infos)
def _cached_f(self, x: np.ndarray, noisy: bool) -> Mapping[str, Any]:
noise_sd = self.noise_sd if noisy else 0.0
x_tuple = tuple(x) # works since x is 1-d array
if not self.cache_evaluations:
res = {**self.f(x)}
res["mean"] += np.random.randn() * noise_sd
return res
if x_tuple in self.cache:
return self.cache[x_tuple]
res = {**self.f(x)}
res["mean"] += np.random.randn() * noise_sd
self.cache[x_tuple] = res
return res
[docs] def f(self, x: np.ndarray) -> Mapping[str, Any]:
"""The deterministic function that produces the metric outcomes."""
raise NotImplementedError