Source code for ax.core.objective
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
import warnings
from typing import Any, Iterable, List, Optional, Tuple
from ax.core.metric import Metric
from ax.utils.common.base import SortableBase
from ax.utils.common.logger import get_logger
from ax.utils.common.typeutils import not_none
logger = get_logger(__name__)
[docs]class Objective(SortableBase):
"""Base class for representing an objective.
Attributes:
minimize: If True, minimize metric.
"""
def __init__(self, metric: Metric, minimize: Optional[bool] = None) -> None:
"""Create a new objective.
Args:
metric: The metric to be optimized.
minimize: If True, minimize metric. If None, will be set based on the
`lower_is_better` property of the metric (if that is not specified,
will raise a DeprecationWarning).
"""
lower_is_better = metric.lower_is_better
if minimize is None:
if lower_is_better is None:
warnings.warn(
f"Defaulting to `minimize=False` for metric {metric.name} not "
+ "specifying `lower_is_better` property. This is a wild guess. "
+ "Specify either `lower_is_better` on the metric, or specify "
+ "`minimize` explicitly. This will become an error in the future.",
DeprecationWarning,
)
minimize = False
else:
minimize = lower_is_better
if lower_is_better is not None:
if lower_is_better and not minimize:
warnings.warn(
f"Attempting to maximize metric {metric.name} with property "
"`lower_is_better=True`."
)
elif not lower_is_better and minimize:
warnings.warn(
f"Attempting to minimize metric {metric.name} with property "
"`lower_is_better=False`."
)
self._metric = metric
self.minimize = not_none(minimize)
@property
def metric(self) -> Metric:
"""Get the objective metric."""
return self._metric
@property
def metrics(self) -> List[Metric]:
"""Get a list of objective metrics."""
return [self._metric]
@property
def metric_names(self) -> List[str]:
"""Get a list of objective metric names."""
return [m.name for m in self.metrics]
[docs] def clone(self) -> Objective:
"""Create a copy of the objective."""
return Objective(self.metric.clone(), self.minimize)
def __repr__(self) -> str:
return 'Objective(metric_name="{}", minimize={})'.format(
self.metric.name, self.minimize
)
[docs] def get_unconstrainable_metrics(self) -> List[Metric]:
"""Return a list of metrics that are incompatible with OutcomeConstraints."""
return self.metrics
@property
def _unique_id(self) -> str:
return str(self)
[docs]class MultiObjective(Objective):
"""Class for an objective composed of a multiple component objectives.
The Acquisition function determines how the objectives are weighted.
Attributes:
objectives: List of objectives.
"""
weights: List[float]
def __init__(
self,
objectives: Optional[List[Objective]] = None,
**extra_kwargs: Any, # Here to satisfy serialization.
) -> None:
"""Create a new objective.
Args:
objectives: The list of objectives to be jointly optimized.
"""
# Support backwards compatibility for old API in which
# MultiObjective constructor accepted `metrics` and `minimize`
# rather than `objectives`
if objectives is None:
if "metrics" not in extra_kwargs:
raise ValueError(
"Must either specify `objectives` or `metrics` "
"as input to `MultiObjective` constructor."
)
metrics = extra_kwargs["metrics"]
minimize = extra_kwargs.get("minimize", False)
warnings.warn(
"Passing `metrics` and `minimize` as input to the `MultiObjective` "
"constructor will soon be deprecated. Instead, pass a list of "
"`objectives`. This will become an error in the future.",
DeprecationWarning,
)
objectives = []
for metric in metrics:
lower_is_better = metric.lower_is_better or False
_minimize = not lower_is_better if minimize else lower_is_better
objectives.append(Objective(metric=metric, minimize=_minimize))
self._objectives = not_none(objectives)
# For now, assume all objectives are weighted equally.
# This might be used in the future to change emphasis on the
# relative focus of the exploration during the optimization.
self.weights = [1.0 for _ in range(len(objectives))]
@property
def metric(self) -> Metric:
"""Override base method to error."""
raise NotImplementedError(
f"{type(self).__name__} is composed of multiple metrics"
)
@property
def metrics(self) -> List[Metric]:
"""Get the objective metrics."""
return [o.metric for o in self._objectives]
@property
def objectives(self) -> List[Objective]:
"""Get the objectives."""
return self._objectives
@property
def objective_weights(self) -> Iterable[Tuple[Objective, float]]:
"""Get the objectives and weights."""
return zip(self.objectives, self.weights)
[docs] def clone(self) -> Objective:
"""Create a copy of the objective."""
return MultiObjective(objectives=[o.clone() for o in self.objectives])
def __repr__(self) -> str:
return f"MultiObjective(objectives={self.objectives})"
[docs]class ScalarizedObjective(Objective):
"""Class for an objective composed of a linear scalarization of metrics.
Attributes:
metrics: List of metrics.
weights: Weights for scalarization; default to 1.
"""
weights: List[float]
def __init__(
self,
metrics: List[Metric],
weights: Optional[List[float]] = None,
minimize: bool = False,
) -> None:
"""Create a new objective.
Args:
metric: The metric to be optimized.
weights: The weights for the linear combination of metrics.
minimize: If true, minimize the linear combination.
"""
if weights is None:
weights = [1.0 for i in range(len(metrics))]
else:
if len(weights) != len(metrics):
raise ValueError("Length of weights must equal length of metrics")
self._metrics = metrics
self.weights = weights
self.minimize = minimize
@property
def metric(self) -> Metric:
"""Override base method to error."""
raise NotImplementedError(
f"{type(self).__name__} is composed of multiple metrics"
)
@property
def metrics(self) -> List[Metric]:
"""Get the metrics."""
return self._metrics
@property
def metric_weights(self) -> Iterable[Tuple[Metric, float]]:
"""Get the metrics and weights."""
return zip(self.metrics, self.weights)
[docs] def clone(self) -> Objective:
"""Create a copy of the objective."""
return ScalarizedObjective(
metrics=[m.clone() for m in self.metrics],
weights=self.weights.copy(),
minimize=self.minimize,
)
def __repr__(self) -> str:
return "ScalarizedObjective(metric_names={}, weights={}, minimize={})".format(
[metric.name for metric in self.metrics], self.weights, self.minimize
)