{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Ax Service API with RayTune on PyTorch CNN\n",
"\n",
"Ax integrates easily with different scheduling frameworks and distributed training frameworks. In this example, Ax-driven optimization is executed in a distributed fashion using [RayTune](https://ray.readthedocs.io/en/latest/tune.html). \n",
"\n",
"RayTune is a scalable framework for hyperparameter tuning that provides many state-of-the-art hyperparameter tuning algorithms and seamlessly scales from laptop to distributed cluster with fault tolerance. RayTune leverages [Ray](https://ray.readthedocs.io/)'s Actor API to provide asynchronous parallel and distributed execution.\n",
"\n",
"Ray 'Actors' are a simple and clean abstraction for replicating your Python classes across multiple workers and nodes. Each hyperparameter evaluation is asynchronously executed on a separate Ray actor and reports intermediate training progress back to RayTune. Upon reporting, RayTune then uses this information to performs actions such as early termination, re-prioritization, or checkpointing."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import logging\n",
"\n",
"from ray import tune\n",
"from ray.tune import report\n",
"from ray.tune.suggest.ax import AxSearch\n",
"\n",
"logger = logging.getLogger(tune.__name__)\n",
"logger.setLevel(\n",
" level=logging.CRITICAL\n",
") # Reduce the number of Ray warnings that are not relevant here."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:22] ax.utils.notebook.plotting: Injecting Plotly library into cell. Do not overwrite or delete cell.\n"
]
},
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import numpy as np\n",
"import torch\n",
"from ax.plot.contour import plot_contour\n",
"from ax.plot.trace import optimization_trace_single_method\n",
"from ax.service.ax_client import AxClient\n",
"from ax.utils.notebook.plotting import init_notebook_plotting, render\n",
"from ax.utils.tutorials.cnn_utils import CNN, evaluate, load_mnist, train\n",
"\n",
"init_notebook_plotting()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 1. Initialize client\n",
"We specify `enforce_sequential_optimization` as False, because Ray runs many trials in parallel. With the sequential optimization enforcement, `AxClient` would expect the first few trials to be completed with data before generating more trials.\n",
"\n",
"When high parallelism is not required, it is best to enforce sequential optimization, as it allows for achieving optimal results in fewer (but sequential) trials. In cases where parallelism is important, such as with distributed training using Ray, we choose to forego minimizing resource utilization and run more trials in parallel."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:22] ax.service.ax_client: Starting optimization with verbose logging. To disable logging, set the `verbose_logging` argument to `False`. Note that float values in the logs are rounded to 2 decimal points.\n"
]
}
],
"source": [
"ax = AxClient(enforce_sequential_optimization=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 2. Set up experiment\n",
"Here we set up the search space and specify the objective; refer to the Ax API tutorials for more detail."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"MINIMIZE = False # Whether we should be minimizing or maximizing the objective"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:22] ax.service.utils.instantiation: Inferred value type of ParameterType.FLOAT for parameter lr. If that is not the expected value type, you can explicity specify 'value_type' ('int', 'float', 'bool' or 'str') in parameter dict.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:22] ax.service.utils.instantiation: Inferred value type of ParameterType.FLOAT for parameter momentum. If that is not the expected value type, you can explicity specify 'value_type' ('int', 'float', 'bool' or 'str') in parameter dict.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:22] ax.modelbridge.dispatch_utils: Using Bayesian optimization since there are more ordered parameters than there are categories for the unordered categorical parameters.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:22] ax.modelbridge.dispatch_utils: Using Bayesian Optimization generation strategy: GenerationStrategy(name='Sobol+GPEI', steps=[Sobol for 5 trials, GPEI for subsequent trials]). Iterations after 5 will take longer to generate due to model-fitting.\n"
]
}
],
"source": [
"ax.create_experiment(\n",
" name=\"mnist_experiment\",\n",
" parameters=[\n",
" {\"name\": \"lr\", \"type\": \"range\", \"bounds\": [1e-6, 0.4], \"log_scale\": True},\n",
" {\"name\": \"momentum\", \"type\": \"range\", \"bounds\": [0.0, 1.0]},\n",
" ],\n",
" objective_name=\"mean_accuracy\",\n",
" minimize=MINIMIZE,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ax.experiment.optimization_config.objective.minimize"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz\n",
"Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to /home/runner/.data/MNIST/raw/train-images-idx3-ubyte.gz\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "218bb58d0bda45adb402a7427a17e00c",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/9912422 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting /home/runner/.data/MNIST/raw/train-images-idx3-ubyte.gz to /home/runner/.data/MNIST/raw\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz\n",
"Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to /home/runner/.data/MNIST/raw/train-labels-idx1-ubyte.gz\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "1b3264cb23a1446cb827743b7ace6c87",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/28881 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting /home/runner/.data/MNIST/raw/train-labels-idx1-ubyte.gz to /home/runner/.data/MNIST/raw\n",
"\n",
"Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz\n",
"Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz to /home/runner/.data/MNIST/raw/t10k-images-idx3-ubyte.gz\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0f28155f4e7d42ae9f8d678fc34babf4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/1648877 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting /home/runner/.data/MNIST/raw/t10k-images-idx3-ubyte.gz to /home/runner/.data/MNIST/raw\n",
"\n",
"Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to /home/runner/.data/MNIST/raw/t10k-labels-idx1-ubyte.gz\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "502d1904c65446f5b78cd06810282f1e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/4542 [00:00, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting /home/runner/.data/MNIST/raw/t10k-labels-idx1-ubyte.gz to /home/runner/.data/MNIST/raw\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\n",
"The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\n"
]
},
{
"data": {
"text/plain": [
"(,\n",
" ,\n",
" )"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"load_mnist(data_path=\"~/.data\") # Pre-load the dataset before the initial evaluations are executed."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 3. Define how to evaluate trials\n",
"Since we use the Ax Service API here, we evaluate the parameterizations that Ax suggests, using RayTune. The evaluation function follows its usual pattern, taking in a parameterization and outputting an objective value. For detail on evaluation functions, see [Trial Evaluation](https://ax.dev/docs/runner.html). "
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def train_evaluate(parameterization):\n",
" device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
" train_loader, valid_loader, test_loader = load_mnist(data_path=\"~/.data\")\n",
" net = train(\n",
" net=CNN(),\n",
" train_loader=train_loader,\n",
" parameters=parameterization,\n",
" dtype=torch.float,\n",
" device=device,\n",
" )\n",
" report(\n",
" mean_accuracy=evaluate(\n",
" net=net,\n",
" data_loader=valid_loader,\n",
" dtype=torch.float,\n",
" device=device,\n",
" )\n",
" )"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 4. Run optimization\n",
"Execute the Ax optimization and trial evaluation in RayTune using [AxSearch algorithm](https://ray.readthedocs.io/en/latest/tune-searchalg.html#ax-search):"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/ray/_private/services.py:238: UserWarning:\n",
"\n",
"Not all Ray Dashboard dependencies were found. To use the dashboard please install Ray using `pip install ray[default]`. To disable this message, set RAY_DISABLE_IMPORT_WARNING env var to '1'.\n",
"\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:26] ax.service.ax_client: Generated new trial 0 with parameters {'lr': 0.0, 'momentum': 0.3}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:26] ax.service.ax_client: Generated new trial 1 with parameters {'lr': 0.0, 'momentum': 0.8}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:26] ax.service.ax_client: Generated new trial 2 with parameters {'lr': 0.29, 'momentum': 0.55}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=2798)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2798)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2798)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=2798)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2798)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2798)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2798)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=2798)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=2797)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2797)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2797)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=2797)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2797)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2797)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2797)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=2797)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:36] ax.service.ax_client: Completed trial 0 with data: {'mean_accuracy': (0.94, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:36] ax.service.ax_client: Generated new trial 3 with parameters {'lr': 0.02, 'momentum': 0.95}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:37] ax.service.ax_client: Completed trial 1 with data: {'mean_accuracy': (0.66, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:37] ax.service.ax_client: Generated new trial 4 with parameters {'lr': 0.0, 'momentum': 0.9}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=2871)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2871)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2871)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=2871)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2871)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2871)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2871)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=2871)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=2876)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2876)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2876)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=2876)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2876)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2876)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2876)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=2876)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:47] ax.service.ax_client: Completed trial 2 with data: {'mean_accuracy': (0.1, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:47] ax.service.ax_client: Generated new trial 5 with parameters {'lr': 0.0, 'momentum': 0.13}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:48] ax.service.ax_client: Completed trial 3 with data: {'mean_accuracy': (0.09, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:49] ax.service.ax_client: Generated new trial 6 with parameters {'lr': 0.01, 'momentum': 0.0}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=2926)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2926)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2926)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=2926)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2926)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2926)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2926)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=2926)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=2951)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2951)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2951)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=2951)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2951)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2951)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2951)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=2951)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:58] ax.service.ax_client: Completed trial 4 with data: {'mean_accuracy': (0.1, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:42:59] ax.service.ax_client: Generated new trial 7 with parameters {'lr': 0.0, 'momentum': 0.4}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:00] ax.service.ax_client: Completed trial 5 with data: {'mean_accuracy': (0.88, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=2982)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2982)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2982)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=2982)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2982)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=2982)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=2982)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=2982)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:01] ax.service.ax_client: Generated new trial 8 with parameters {'lr': 0.0, 'momentum': 0.19}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3004)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3004)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3004)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3004)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3004)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3004)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3004)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3004)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:10] ax.service.ax_client: Completed trial 6 with data: {'mean_accuracy': (0.11, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:12] ax.service.ax_client: Generated new trial 9 with parameters {'lr': 0.0, 'momentum': 0.28}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:12] ax.service.ax_client: Completed trial 7 with data: {'mean_accuracy': (0.87, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:13] ax.service.ax_client: Generated new trial 10 with parameters {'lr': 0.0, 'momentum': 0.21}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3035)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3035)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3035)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3035)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3035)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3035)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3035)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3035)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3058)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3058)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3058)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3058)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3058)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3058)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3058)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3058)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:22] ax.service.ax_client: Completed trial 8 with data: {'mean_accuracy': (0.95, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:23] ax.service.ax_client: Generated new trial 11 with parameters {'lr': 0.0, 'momentum': 0.54}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:23] ax.service.ax_client: Completed trial 9 with data: {'mean_accuracy': (0.92, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:25] ax.service.ax_client: Generated new trial 12 with parameters {'lr': 0.0, 'momentum': 0.24}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3089)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3089)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3089)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3089)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3089)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3089)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3089)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3089)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3114)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3114)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3114)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3114)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3114)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3114)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3114)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3114)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:34] ax.service.ax_client: Completed trial 10 with data: {'mean_accuracy': (0.19, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:36] ax.service.ax_client: Generated new trial 13 with parameters {'lr': 0.0, 'momentum': 0.44}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:36] ax.service.ax_client: Completed trial 11 with data: {'mean_accuracy': (0.12, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3149)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3149)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3149)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3149)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3149)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3149)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3149)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3149)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:38] ax.service.ax_client: Generated new trial 14 with parameters {'lr': 0.0, 'momentum': 0.69}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3172)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3172)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3172)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3172)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3172)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3172)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3172)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3172)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:47] ax.service.ax_client: Completed trial 12 with data: {'mean_accuracy': (0.95, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:48] ax.service.ax_client: Generated new trial 15 with parameters {'lr': 0.0, 'momentum': 1.0}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:48] ax.service.ax_client: Completed trial 13 with data: {'mean_accuracy': (0.94, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:50] ax.service.ax_client: Generated new trial 16 with parameters {'lr': 0.0, 'momentum': 0.32}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3204)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3204)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3204)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3204)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3204)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3204)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3204)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3204)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3228)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3228)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3228)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3228)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3228)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3228)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3228)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3228)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:43:59] ax.service.ax_client: Completed trial 14 with data: {'mean_accuracy': (0.9, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:00] ax.service.ax_client: Generated new trial 17 with parameters {'lr': 0.0, 'momentum': 0.53}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:00] ax.service.ax_client: Completed trial 15 with data: {'mean_accuracy': (0.84, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3258)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3258)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3258)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3258)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3258)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3258)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3258)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3258)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3284)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3284)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3284)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3284)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3284)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3284)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3284)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3284)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:05] ax.service.ax_client: Generated new trial 18 with parameters {'lr': 0.0, 'momentum': 0.0}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:13] ax.service.ax_client: Completed trial 17 with data: {'mean_accuracy': (0.89, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:15] ax.service.ax_client: Generated new trial 19 with parameters {'lr': 0.0, 'momentum': 0.77}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:15] ax.service.ax_client: Completed trial 16 with data: {'mean_accuracy': (0.96, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3317)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3317)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3317)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3317)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3317)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3317)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3317)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3317)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3341)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3341)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3341)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3341)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3341)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3341)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3341)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3341)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:18] ax.service.ax_client: Generated new trial 20 with parameters {'lr': 0.0, 'momentum': 0.42}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:25] ax.service.ax_client: Completed trial 18 with data: {'mean_accuracy': (0.91, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3378)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3378)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3378)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3378)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3378)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3378)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3378)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3378)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:29] ax.service.ax_client: Generated new trial 21 with parameters {'lr': 0.0, 'momentum': 0.13}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:29] ax.service.ax_client: Completed trial 19 with data: {'mean_accuracy': (0.87, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:30] ax.service.ax_client: Generated new trial 22 with parameters {'lr': 0.0, 'momentum': 0.27}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3405)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3405)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3405)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3405)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3405)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3405)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3405)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3405)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:38] ax.service.ax_client: Completed trial 20 with data: {'mean_accuracy': (0.96, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3431)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3431)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3431)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3431)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3431)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3431)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3431)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3431)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:42] ax.service.ax_client: Generated new trial 23 with parameters {'lr': 0.0, 'momentum': 0.36}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:42] ax.service.ax_client: Completed trial 21 with data: {'mean_accuracy': (0.92, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3459)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3459)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3459)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3459)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3459)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3459)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3459)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3459)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:48] ax.service.ax_client: Generated new trial 24 with parameters {'lr': 0.0, 'momentum': 1.0}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:53] ax.service.ax_client: Completed trial 22 with data: {'mean_accuracy': (0.96, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3488)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3488)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3488)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3488)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3488)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3488)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3488)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3488)\u001b[0m \n",
"[INFO 09-15 02:44:56] ax.service.ax_client: Generated new trial 25 with parameters {'lr': 0.0, 'momentum': 0.9}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:56] ax.service.ax_client: Completed trial 23 with data: {'mean_accuracy': (0.96, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:44:58] ax.service.ax_client: Generated new trial 26 with parameters {'lr': 0.0, 'momentum': 0.42}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3515)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3515)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3515)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3515)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3515)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3515)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3515)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3515)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:06] ax.service.ax_client: Completed trial 24 with data: {'mean_accuracy': (0.82, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3545)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3545)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3545)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3545)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3545)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3545)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3545)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3545)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:10] ax.service.ax_client: Generated new trial 27 with parameters {'lr': 0.0, 'momentum': 0.0}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:10] ax.service.ax_client: Completed trial 25 with data: {'mean_accuracy': (0.95, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:13] ax.service.ax_client: Generated new trial 28 with parameters {'lr': 0.0, 'momentum': 0.85}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3573)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3573)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3573)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3573)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3573)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3573)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3573)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3573)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:20] ax.service.ax_client: Completed trial 26 with data: {'mean_accuracy': (0.96, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3602)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3602)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3602)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3602)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3602)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3602)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3602)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3602)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:26] ax.service.ax_client: Generated new trial 29 with parameters {'lr': 0.0, 'momentum': 0.8}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:26] ax.service.ax_client: Completed trial 27 with data: {'mean_accuracy': (0.73, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"\u001b[2m\u001b[36m(pid=3629)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torchvision/datasets/mnist.py:498: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3629)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3629)\u001b[0m The given NumPy array is not writeable, and PyTorch does not support non-writeable tensors. This means you can write to the underlying (supposedly non-writeable) NumPy array using the tensor. You may want to copy the array to protect its data or make it writeable before converting it to a tensor. This type of warning will be suppressed for the rest of this program. (Triggered internally at /pytorch/torch/csrc/utils/tensor_numpy.cpp:180.)\n",
"\u001b[2m\u001b[36m(pid=3629)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3629)\u001b[0m /opt/hostedtoolcache/Python/3.7.11/x64/lib/python3.7/site-packages/torch/nn/functional.py:718: UserWarning:\n",
"\u001b[2m\u001b[36m(pid=3629)\u001b[0m \n",
"\u001b[2m\u001b[36m(pid=3629)\u001b[0m Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at /pytorch/c10/core/TensorImpl.h:1156.)\n",
"\u001b[2m\u001b[36m(pid=3629)\u001b[0m \n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:33] ax.service.ax_client: Completed trial 28 with data: {'mean_accuracy': (0.92, None)}.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"[INFO 09-15 02:45:36] ax.service.ax_client: Completed trial 29 with data: {'mean_accuracy': (0.94, None)}.\n"
]
},
{
"data": {
"text/plain": [
""
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tune.run(\n",
" train_evaluate,\n",
" num_samples=30,\n",
" search_alg=AxSearch(\n",
" ax_client=ax, \n",
" max_concurrent=3, \n",
" ),\n",
" verbose=0, # Set this level to 1 to see status updates and to 2 to also see trial results.\n",
" # To use GPU, specify: resources_per_trial={\"gpu\": 1}.\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 5. Retrieve the optimization results"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'lr': 0.0013874759589031765, 'momentum': 0.4194844231488044}"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"best_parameters, values = ax.get_best_parameters()\n",
"best_parameters"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'mean_accuracy': 0.9644121592976116}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"means, covariances = values\n",
"means"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. Plot the response surface and optimization trace"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"autocolorscale": false,
"autocontour": true,
"colorbar": {
"tickfont": {
"size": 8
},
"ticksuffix": "",
"x": 0.45,
"y": 0.5
},
"colorscale": [
[
0.0,
"rgb(247,252,253)"
],
[
0.125,
"rgb(229,245,249)"
],
[
0.25,
"rgb(204,236,230)"
],
[
0.375,
"rgb(153,216,201)"
],
[
0.5,
"rgb(102,194,164)"
],
[
0.625,
"rgb(65,174,118)"
],
[
0.75,
"rgb(35,139,69)"
],
[
0.875,
"rgb(0,109,44)"
],
[
1.0,
"rgb(0,68,27)"
]
],
"contours": {
"coloring": "heatmap"
},
"hoverinfo": "x+y+z",
"ncontours": 25,
"type": "contour",
"x": [
1e-06,
1.3011511650442548e-06,
1.692994354296022e-06,
2.2028415765056147e-06,
2.866229883678204e-06,
3.729398352432554e-06,
4.852511011181743e-06,
6.3138503555892e-06,
8.215273746089953e-06,
1.0689313005882424e-05,
1.390841207112662e-05,
1.809694657026198e-05,
2.354686311364001e-05,
3.063802837345029e-05,
3.986470631277378e-05,
5.1870009063012666e-05,
6.749072272319499e-05,
8.781563250096393e-05,
0.00011426141253772724,
0.00014867137004306603,
0.00019344392634026088,
0.0002516997901283655,
0.0003274994751669172,
0.0004261263236648159,
0.0005544547624925005,
0.0007214294601814526,
0.000938688782612345,
0.0012213760031100258,
0.0015891948094037057,
0.002067782677737912,
0.0026904978401970136,
0.0035007443993213955,
0.004554997653699184,
0.005926740503884541,
0.007711585311544345,
0.010033938212454078,
0.013055670395116691,
0.01698740074503987,
0.02210317627048227,
0.028759573555516536,
0.03742055263793628,
0.04868979566145066,
0.06335278435066323,
0.0824315491666629,
0.10725590623460621,
0.13955614735503497,
0.18158364372009145,
0.23626776957937787,
0.3074200836506151,
0.4
],
"xaxis": "x",
"y": [
0.0,
0.02040816326530612,
0.04081632653061224,
0.061224489795918366,
0.08163265306122448,
0.1020408163265306,
0.12244897959183673,
0.14285714285714285,
0.16326530612244897,
0.18367346938775508,
0.2040816326530612,
0.22448979591836732,
0.24489795918367346,
0.26530612244897955,
0.2857142857142857,
0.3061224489795918,
0.32653061224489793,
0.3469387755102041,
0.36734693877551017,
0.3877551020408163,
0.4081632653061224,
0.42857142857142855,
0.44897959183673464,
0.4693877551020408,
0.4897959183673469,
0.5102040816326531,
0.5306122448979591,
0.5510204081632653,
0.5714285714285714,
0.5918367346938775,
0.6122448979591836,
0.6326530612244897,
0.6530612244897959,
0.673469387755102,
0.6938775510204082,
0.7142857142857142,
0.7346938775510203,
0.7551020408163265,
0.7755102040816326,
0.7959183673469387,
0.8163265306122448,
0.836734693877551,
0.8571428571428571,
0.8775510204081632,
0.8979591836734693,
0.9183673469387754,
0.9387755102040816,
0.9591836734693877,
0.9795918367346939,
1.0
],
"yaxis": "y",
"z": [
[
0.23922792096054102,
0.27860907365427057,
0.32111255518983095,
0.3662294036188688,
0.41335794557574485,
0.4618179635985049,
0.5108686270913394,
0.5597303518369997,
0.607610415890753,
0.6537316187597743,
0.697362655668512,
0.7378481693683961,
0.774635585560118,
0.8072948850512516,
0.8355267042402958,
0.8591543218101826,
0.878097497726729,
0.8923312393881685,
0.901835730779905,
0.9065386218211088,
0.906249770651747,
0.9006107602228128,
0.8889405617960815,
0.8698577873941753,
0.8412387420766934,
0.8007004077062326,
0.7463605526981402,
0.6775314595756196,
0.5950855653335843,
0.5014208535931568,
0.40012774167837994,
0.2955080395125452,
0.19204020210634554,
0.09380987532976137,
0.0039042840093751474,
-0.07589997305159246,
-0.14486909270809112,
-0.2029686303357533,
-0.25061064813199496,
-0.2884738643163689,
-0.31737873756232426,
-0.33820301207476744,
-0.35182654326347973,
-0.35909699327867006,
-0.3608101735646856,
-0.3577004667837618,
-0.3504379795031558,
-0.3396299668443101,
-0.32582472726306877,
-0.30951666569938285
],
[
0.22727513894214968,
0.2674659463994034,
0.31093858941364866,
0.3571580049796983,
0.40548955421247035,
0.4552141123980217,
0.5055471997190718,
0.5556624911816344,
0.6047196316086709,
0.6518956944604763,
0.6964190226054696,
0.7376034970664187,
0.7748803795578155,
0.8078237689480154,
0.8361646414361038,
0.8597881356399549,
0.8787109339238026,
0.8930421099518123,
0.9029359936883303,
0.9085356900867482,
0.909893481538778,
0.9068640549791812,
0.8988446574648763,
0.8843247434597621,
0.8608405021345741,
0.8255512947275474,
0.7761390765064892,
0.7116154835060539,
0.6327205467304944,
0.5418421326503291,
0.4426122358764994,
0.33937780210862734,
0.2366492667054197,
0.13853351228136634,
0.04814931406298151,
-0.03266363991889143,
-0.10309856101024739,
-0.1630441239214362,
-0.2128340297633966,
-0.25307008990600177,
-0.28449999417692307,
-0.30793489207838465,
-0.32419551803497537,
-0.3340785338975214,
-0.33833701857453935,
-0.3376706933259017,
-0.33272266062974154,
-0.3240802841382384,
-0.3122784576147144,
-0.297803985255493
],
[
0.21500573628212216,
0.25599528758946793,
0.3004349498318407,
0.3477629816541603,
0.39731078461447444,
0.4483189167198077,
0.49995740937299904,
0.551350927603175,
0.6016087706106903,
0.6498590753408848,
0.6952860346203631,
0.7371683020003035,
0.7749158372942335,
0.8081012120782571,
0.8364800411497484,
0.8599943661862476,
0.8787544282965397,
0.8930022716525587,
0.9030701763067324,
0.9093321099833521,
0.9121168091056859,
0.9115358389212433,
0.9070959552636383,
0.8971701840460242,
0.8789494920391289,
0.8491199621466424,
0.8049130451420916,
0.7450387157719953,
0.6701141311496643,
0.5825172959915261,
0.48589896285224987,
0.38460699616002303,
0.2831271972861804,
0.1855301356030853,
0.09493484737681035,
0.013254647429748911,
-0.05860542075966668,
-0.12043305480460775,
-0.17246273279946855,
-0.21520199832727838,
-0.2493117859223779,
-0.2755257079179161,
-0.29459704797066366,
-0.3072652962600009,
-0.3142363612806698,
-0.3161722315326603,
-0.31368700121997617,
-0.30734697029149705,
-0.29767310522019974,
-0.2851445929714054
],
[
0.20247623938472437,
0.24425132625684726,
0.28965394750141327,
0.3380952476560276,
0.38887185148828896,
0.44118281265378106,
0.4941511266255516,
0.5468505754003891,
0.59833791779749,
0.6476897694779564,
0.6940430641730108,
0.7366374385168406,
0.7748569660134199,
0.8082673150338768,
0.836642808185404,
0.8599765317422416,
0.8784672858463455,
0.8924859808759051,
0.9025409856732782,
0.909242704599373,
0.9132127224095652,
0.9148472623357865,
0.9138036959007823,
0.9083684240580548,
0.8953998187704696,
0.8711117962881956,
0.8322805664582297,
0.7773200815019103,
0.7067380705770616,
0.6228991474607677,
0.5294398422933504,
0.4306545214882911,
0.3309431447478521,
0.2342892735845466,
0.14378690150198203,
0.06142155166743046,
-0.011784605926534852,
-0.07549501016792959,
-0.1298236660927664,
-0.1751660186516245,
-0.2120819424259327,
-0.2412164095826933,
-0.26324687004500114,
-0.2788494715430836,
-0.28867852822973505,
-0.2933552274167277,
-0.2934626321980416,
-0.2895447656210506,
-0.2821080858151568,
-0.27162407668822364
],
[
0.18975087052925077,
0.23229544033557342,
0.2786543431654453,
0.3282112957840451,
0.3802274835986267,
0.4338594681095444,
0.4881819438193946,
0.54221635363226,
0.594965299831164,
0.6454520231577191,
0.6927639336480256,
0.7360987555910027,
0.7748109438513853,
0.8084545527041501,
0.836816908886752,
0.8599357560041914,
0.8780921060562749,
0.8917790030583057,
0.9016733496257497,
0.9086162320355242,
0.9135189721429147,
0.9170721903223625,
0.9191249296618567,
0.9179243471159415,
0.9100350582525044,
0.8912242401490025,
0.8578199635835058,
0.8079523299794822,
0.7420356688358624,
0.6624100203693346,
0.5726513580075545,
0.4769361739000239,
0.37951633860776157,
0.2842452416148263,
0.19417025229440266,
0.11134168196593741,
0.036909981656293556,
-0.028643754517870157,
-0.08529249243204962,
-0.13330179497532335,
-0.17311613191887054,
-0.2052807317467218,
-0.23038886487636967,
-0.2490472101499671,
-0.26185408834046575,
-0.26938680819461513,
-0.2721953334082894,
-0.27080012061516223,
-0.26569244117825586,
-0.257335881869725
],
[
0.17690219204301472,
0.2201967706060498,
0.2675019030922572,
0.3181736578297407,
0.37143723385940175,
0.42640586407502984,
0.4821049245155824,
0.5375024763934553,
0.5915459583820547,
0.6432041775831308,
0.6915136993477268,
0.7356284770367273,
0.7748706740736415,
0.808778994423669,
0.8371487189528036,
0.8600556950440941,
0.8778554586923593,
0.8911539739185168,
0.9007838877988159,
0.9078006206336521,
0.9133849601056795,
0.9185111140580159,
0.923248387588906,
0.9258659759439276,
0.9227089549059877,
0.9091549553993964,
0.8811047641119556,
0.8364235245245073,
0.7754488028469015,
0.7004721253767922,
0.6149466116781038,
0.5228581317292499,
0.42824988215850707,
0.33480832106990777,
0.2455158539740947,
0.1624787075109232,
0.08698098324692094,
0.019664251489388773,
-0.039284922412022305,
-0.08998540058062299,
-0.1327524336231901,
-0.1680207554502201,
-0.19629136272294756,
-0.2180955060895673,
-0.2339712002436094,
-0.24444880963734406,
-0.25004307913947155,
-0.2512495118002255,
-0.2485433871406234,
-0.24238006053094818
],
[
0.16401180721931286,
0.20803291144164104,
0.2562700559776916,
0.3080514957138814,
0.36256595378288453,
0.41888257603343376,
0.47597659515431073,
0.5327620371996586,
0.5881307793208256,
0.6409969500218923,
0.6903459278921759,
0.7352871263858787,
0.7751088870827597,
0.8093319604128931,
0.8377555093764982,
0.860487238001777,
0.8779481372974004,
0.8908453111928589,
0.9001504582281157,
0.9071085015971105,
0.9131362326193392,
0.9194609913632901,
0.9263747558593032,
0.9322377507290547,
0.9332917477129934,
0.9246176282042984,
0.9017270970767779,
0.8622473308168351,
0.8064528271307284,
0.7365433970838445,
0.6557699841992981,
0.5678497079240115,
0.4765604667441015,
0.38539117354450353,
0.2972447773691103,
0.2142757011428691,
0.13790374165986252,
0.06894242758534397,
0.007753134191894495,
-0.04562150197338288,
-0.09135499191146357,
-0.12976168617363504,
-0.1612427900828628,
-0.18624853167673994,
-0.20525250465574052,
-0.21873512909116344,
-0.22717377733176736,
-0.2310375082642997,
-0.23078465973672369,
-0.22686185775346868
],
[
0.15117111021847307,
0.19589067365379376,
0.2450406497459024,
0.2979213275445263,
0.3536844412593243,
0.41135427285018217,
0.4698552141105332,
0.5280469532785578,
0.5847659897470885,
0.6388723180515021,
0.6893007411847901,
0.7351164186359277,
0.7755734337916744,
0.8101730775477374,
0.8387153954266443,
0.86133450139738,
0.8785070037791334,
0.8910268115030746,
0.8999858492037887,
0.9067869296080555,
0.9130394267213903,
0.9201789224250714,
0.9286925773426822,
0.9370994550741422,
0.9416877742621841,
0.937369470695584,
0.919332153722282,
0.88500358205489,
0.8345986029966206,
0.7701561026590628,
0.6946308032010716,
0.6113922299338359,
0.5239028192453236,
0.4354300567947806,
0.3487875518548074,
0.2661726487893381,
0.1891413182117484,
0.1186865053163142,
0.0553557502025841,
-0.0006349979347834989,
-0.04930709848081649,
-0.0908460824478694,
-0.1255468199203682,
-0.1537735394983153,
-0.17593164811530293,
-0.19244876959007606,
-0.20376275321731097,
-0.21031462901963882,
-0.21254469187941216,
-0.21089016229386304
],
[
0.138482070546592,
0.18386690884400714,
0.2339047996988058,
0.28786788193230645,
0.3448702530681228,
0.40389042840738026,
0.46380132969555715,
0.5234083104857705,
0.5814932068126438,
0.6368631525345199,
0.6884038654271081,
0.7351374923689162,
0.7762843692934235,
0.8113257167645592,
0.8400603512219744,
0.8626442855100601,
0.8796005778419574,
0.8917951881958572,
0.9004192554604004,
0.9069964462891944,
0.9132774286987875,
0.9208505048307494,
0.9303604629242823,
0.940539249463272,
0.9478698504599801,
0.9472543272893289,
0.9336662758221534,
0.9043897306579565,
0.8595587971912589,
0.8009539466043297,
0.7311321852656341,
0.6530416143716382,
0.5697878297854764,
0.48440037122318647,
0.3995985958162604,
0.31762027631113104,
0.24015730439220406,
0.16838590302363254,
0.10304681946952732,
0.044537388054282756,
-0.00700403824230833,
-0.05162777325035428,
-0.08951719793027979,
-0.1209464592028967,
-0.14624953452952816,
-0.16579864946266443,
-0.1799900358265829,
-0.18923503782561846,
-0.19395465828197067,
-0.1945758521973714
],
[
0.12605802589950976,
0.17206937801312716,
0.2229638110114336,
0.27798505779943833,
0.3362086463726652,
0.3965662115496501,
0.4578786085539287,
0.5188971167118572,
0.5783500828941419,
0.6349936934999327,
0.6876668471414663,
0.7353507475654187,
0.7772332619897242,
0.8127755665972991,
0.8417737385860247,
0.8644021070475179,
0.8812232002483676,
0.8931627453915942,
0.9014879395641495,
0.9078030422315422,
0.9139445348533081,
0.9215946999117148,
0.931522898481884,
0.9427036889576001,
0.9519295650647805,
0.954263787612028,
0.944640757955365,
0.9202800920644105,
0.881171412237169,
0.8287214161756373,
0.7649908903682534,
0.6924424265759208,
0.6137933804875568,
0.531826175735283,
0.44916568790488565,
0.36808999848103274,
0.29042596943286564,
0.21753351274729604,
0.15034907922706497,
0.08945518455416812,
0.035154011644913385,
-0.012465683999787203,
-0.05347241255574664,
-0.0880473184228927,
-0.11645040544487639,
-0.13899625713658292,
-0.1560375110311677,
-0.16795412687811373,
-0.17514643054720203,
-0.17803006993417714
],
[
0.1140244290227217,
0.16061763882946545,
0.21233014900268743,
0.26837693470576673,
0.3277935725080075,
0.38946348442951007,
0.4521548821401803,
0.5145654337068246,
0.5753715440332815,
0.6332808983682918,
0.6870885039715677,
0.7357374027580936,
0.7783849031343997,
0.8144726143175949,
0.8437927966081561,
0.8665356496139458,
0.8832991739813262,
0.895059940618635,
0.9031391941720379,
0.9091819656363225,
0.9150569372411936,
0.9224879713003189,
0.932338442096069,
0.9438268469064721,
0.9541253143481956,
0.9586122352060237,
0.9524093828444342,
0.9327781093525281,
0.8994676937046835,
0.8533976687387733,
0.7960442124396313,
0.7293316671904342,
0.6555672434224527,
0.5772835920507355,
0.49701467257288223,
0.417080171150523,
0.33943971750883595,
0.2656337064120829,
0.19679206099486302,
0.13368166606082976,
0.07676880783030482,
0.026282243189593935,
-0.017730360910824583,
-0.055355611519170345,
-0.086777849421109,
-0.11225223272674589,
-0.13208600766161815,
-0.14662604388956801,
-0.15625048735674107,
-0.16136246433035994
],
[
0.10251942607423459,
0.14964389068480766,
0.20212840285723155,
0.2591587014567292,
0.31972859442664187,
0.38267180478491536,
0.4467033260375448,
0.5104678177050079,
0.5725915668694543,
0.6317366211064807,
0.6866575746854252,
0.7362627214380087,
0.7796813092129034,
0.8163362728226322,
0.8460153854395212,
0.8689234829486299,
0.8856928456929642,
0.8973458789658381,
0.9052407872022331,
0.911029031109499,
0.9165655495583047,
0.9235741672760452,
0.9329819403031749,
0.9442278657918364,
0.9548868781707136,
0.9607750822833523,
0.9574128577938038,
0.9422278054901895,
0.9146686987140344,
0.8750682526651675,
0.8242413262528812,
0.7635315453517516,
0.6948220732237302,
0.6203984516985368,
0.5427098882425094,
0.4641191028313752,
0.3867141291504255,
0.31220863455073544,
0.241918907981171,
0.1767906365592382,
0.11745044444054031,
0.06426489116199174,
0.017396859424911426,
-0.02314572905368173,
-0.05747083648484064,
-0.08577295701479692,
-0.10831238399955545,
-0.125401218647346,
-0.13739382655596488,
-0.14467943846854214
],
[
0.09169404804599979,
0.13929347125581493,
0.19249593581718316,
0.2504572487249812,
0.3121275619305618,
0.37628930531323007,
0.44160365970828885,
0.5066629614915141,
0.5700453876331534,
0.6303705110366001,
0.6863564362012392,
0.7368807155899513,
0.7810476869464587,
0.8182630447029999,
0.8483098684304624,
0.8714074058310662,
0.8882232827635745,
0.8998248808031271,
0.9075977974549269,
0.9131758970214345,
0.9183655269627145,
0.9248586370751126,
0.9336153656433199,
0.9442577696858754,
0.9547398855790203,
0.9613932523924225,
0.9602930449360747,
0.9491555281509096,
0.9271420943378501,
0.8939327396060863,
0.8496193059647779,
0.7949320396083837,
0.7313233939035254,
0.6608390708817733,
0.5858511380867447,
0.5087655162503089,
0.43179107273606077,
0.35680308121813364,
0.2852921473740318,
0.21837248103052131,
0.15682325547103182,
0.10114346940730501,
0.051607927208470294,
0.008317452600573483,
-0.02875986671396824,
-0.05975722532089378,
-0.08488668098335728,
-0.10442394534475574,
-0.11869792673993584,
-0.1280824438283058
],
[
0.08171182045823167,
0.12972448408804083,
0.18358262654237356,
0.24241118004398293,
0.305114896584258,
0.37042332144126744,
0.43694323567661214,
0.5032153970202928,
0.5677719882398334,
0.6291934560620374,
0.6861656753892261,
0.7375400349554821,
0.7823999081892293,
0.8201359988778587,
0.8505270988888741,
0.8738073760714742,
0.8906825605232797,
0.9022678954555048,
0.9099747052150893,
0.9154087175305815,
0.9203052638218415,
0.9262968999537142,
0.9343432127565443,
0.9442057027543723,
0.9541659156549345,
0.9611005620715759,
0.9617322793436806,
0.9541589626718976,
0.9373274312295022,
0.9102537757027712,
0.8722675020102051,
0.823465713501754,
0.7648723749813342,
0.6983055746008926,
0.6260683464749783,
0.5506073456943423,
0.47424051329570255,
0.39898825911386665,
0.3264986063659115,
0.25803954009011415,
0.1945311913567047,
0.13659661006121604,
0.08461696033152377,
0.03878273603953897,
-0.0008633139030150838,
-0.03439307931408475,
-0.061969406233854496,
-0.08383007608129689,
-0.1002768058426432,
-0.11166636130133656
],
[
0.0727477998304451,
0.12110673594549592,
0.17554991095528183,
0.23517023011342453,
0.29882540507181965,
0.3651906524133519,
0.43281787618538325,
0.500197089493762,
0.5658166609022561,
0.6282213385671421,
0.6860692412361047,
0.738190695724277,
0.7836530110980153,
0.8218353573649648,
0.8525135752733827,
0.8759378576118042,
0.892856083565811,
0.9044371638077657,
0.9121223803367267,
0.9174917005246106,
0.9222000810944688,
0.9277899821355728,
0.935181146726982,
0.9442256884674134,
0.953486290343936,
0.9603855258993593,
0.9623118317276331,
0.9577877270577956,
0.9456527644545323,
0.9242994339550044,
0.8922866011205548,
0.8490784414865322,
0.7952858930794144,
0.7325176412223264,
0.6630153061431969,
0.5892598896011906,
0.5136617180337554,
0.4383649832596344,
0.3651537103447086,
0.295430906748584,
0.2302426806482174,
0.1703250190746901,
0.11615780075915882,
0.06801644912495242,
0.026015962884904043,
-0.009854864715600042,
-0.03970900993754778,
-0.0637448791928521,
-0.08223522337799483,
-0.09551800944940803
],
[
0.06498715919548315,
0.11362032855076742,
0.16856948514128423,
0.22889420174767572,
0.2934035883569422,
0.3607173536331065,
0.4293323087316138,
0.49768873152463217,
0.5642334150410799,
0.6274788218743657,
0.6860598516918031,
0.7387912761860971,
0.7847302732986624,
0.8232495787045477,
0.8541249056651175,
0.8776242842073266,
0.8945428534117686,
0.9061111180793863,
0.9138078969496499,
0.9191968284424883,
0.9238521011886854,
0.9291925146959592,
0.9360558882707355,
0.9443365896739879,
0.9528444569656833,
0.95953020383569,
0.9624171203427435,
0.9604570756875219,
0.9524693437508699,
0.9362921469293525,
0.9097488745385884,
0.8716999830008132,
0.8223767725073141,
0.7632028405714559,
0.6963640720157368,
0.6243643791589346,
0.5496845521173805,
0.4745666515293718,
0.400905402737277,
0.33021675532027067,
0.26365500319133606,
0.20205565888085686,
0.14598787092547127,
0.09580591010500916,
0.05169367446716211,
0.01369942232351995,
-0.018239610096914327,
-0.04428111374726662,
-0.06466707154101992,
-0.07971481958502136
],
[
0.05862337641118287,
0.10745390281707268,
0.16282163765124824,
0.2237514414458317,
0.2890024072664589,
0.3571379599486952,
0.426600047832199,
0.49578053111854237,
0.5630869603916981,
0.627002839019127,
0.686144277057177,
0.7393161813655642,
0.7855724544771547,
0.8242864608556428,
0.8552388868116243,
0.8787185094701067,
0.8955736508569506,
0.907105370911057,
0.9148386691035963,
0.9203298097899326,
0.9250702060816665,
0.9303302655954477,
0.9368276194860922,
0.9444567370687198,
0.9522433716539814,
0.9586324625752325,
0.9622431526012473,
0.9624299453635181,
0.9580180766886629,
0.9463707159959251,
0.9246633614555102,
0.8912179574569445,
0.845937269757579,
0.790087863147369,
0.7258015495023353,
0.6555879416946411,
0.5819714644205642,
0.5072623880893623,
0.43343788357411206,
0.362102294468932,
0.2944981984695446,
0.23154544376351716,
0.17389155839005166,
0.12196245628341762,
0.07600676423560293,
0.03613044229079987,
0.002320979048066052,
-0.02553736883683777,
-0.04765399850390817,
-0.06432371605527087
],
[
0.053855993899496246,
0.10280244945603434,
0.1584931103736863,
0.21991678255892488,
0.28578143299173103,
0.3545940345175488,
0.42474257143714184,
0.49457228328613256,
0.5624539821718432,
0.6268454150341626,
0.6863480574930576,
0.7397625179158018,
0.7861468270092833,
0.8248839522344824,
0.8557677857989179,
0.8791126161162224,
0.8958260647859793,
0.9072874507700563,
0.9150740333423364,
0.9207381244922199,
0.9256837482263152,
0.9310197617540004,
0.9373171106706395,
0.9444382946262737,
0.9515936063653947,
0.957678867341132,
0.9618652156300506,
0.9638381405359819,
0.9624085148458617,
0.954557265682593,
0.9369472039998882,
0.9074587138026535,
0.8657289688503496,
0.8128948421693437,
0.7510296055655629,
0.6826257075797856,
0.6102205777395661,
0.5361605780248795,
0.46247528642981267,
0.3908313958778398,
0.32253851591159827,
0.25858442558764855,
0.19968308836995685,
0.14632398598197915,
0.09881562438049374,
0.057319419443217834,
0.021872865331398317,
-0.007596713374893427,
-0.03126430506630107,
-0.04940023860555487
],
[
0.05088787973463049,
0.09986459365270772,
0.15577438548808964,
0.21756885482409483,
0.28390429018446434,
0.35323193854780466,
0.4238876525659728,
0.49417252766009856,
0.5624234253046948,
0.6270754274792019,
0.6867191374188217,
0.7401559922652784,
0.7864555149410856,
0.8250204837183752,
0.8556697521215634,
0.8787510972854173,
0.8952366158464322,
0.906586613114119,
0.9144308041944286,
0.9203153982060447,
0.9255524965678908,
0.9310856302416193,
0.9373279869386204,
0.9440911647382446,
0.9507416740580973,
0.956580170831277,
0.9612546917147998,
0.9646727865491004,
0.965585851589489,
0.9607263456375836,
0.9464073035299897,
0.9201794749397053,
0.8814822212836644,
0.8313445339726659,
0.7717695443312274,
0.7052054234906056,
0.6341700323804568,
0.5610128527015725,
0.4877853135691489,
0.4161898960795996,
0.3475813887243761,
0.28299843894313337,
0.2232088437428188,
0.1687569671085113,
0.12000581605094307,
0.07716959977924387,
0.04033529725019935,
0.009474300933353885,
-0.015552153450650974,
-0.03498794198766786
],
[
0.04992190639150773,
0.09883926064429316,
0.1548562984686933,
0.21688665911192273,
0.28353530238866054,
0.3531997339440782,
0.42416673646654596,
0.49469662967444167,
0.5630955347059465,
0.6277789153239032,
0.6873298399081879,
0.7405550530496404,
0.7865423237785387,
0.8247244891518068,
0.8549595832561608,
0.8776418950220186,
0.8938106849393663,
0.9050009690509134,
0.9128886269977405,
0.9190081579854223,
0.924576566343771,
0.9303753790378709,
0.9366633154340421,
0.9431961325540129,
0.949471457818207,
0.9551389685595937,
0.9602207917599215,
0.9647247921166908,
0.9673003777832128,
0.9645949207381421,
0.9527416695456105,
0.92907686805409,
0.8929076017052133,
0.8451671487315648,
0.7877710079613309,
0.7230944201743733,
0.6536034176201843,
0.5816183999304436,
0.5091827433991025,
0.4380085122498118,
0.3694738857917182,
0.3046511650488042,
0.24434909162355506,
0.18915786912846144,
0.1394892482717518,
0.09560721471256484,
0.05764743996297739,
0.0256262438609981,
-0.000557124557646671,
-0.021118106144324633
],
[
0.051156957587589424,
0.09992162882133937,
0.15592588180840627,
0.21804531994414744,
0.284835273499872,
0.35464316887386294,
0.4257113052653471,
0.4962636850517799,
0.5645794664890373,
0.6290576065914555,
0.6882766144368341,
0.7410523368864844,
0.7864966519759203,
0.8240817727070349,
0.8537190409877891,
0.8758666066247166,
0.89162971338218,
0.9026020915276058,
0.9104946259719646,
0.9168227061729819,
0.9227063345670883,
0.9287728944617201,
0.9351403352508554,
0.941516023971622,
0.9475056284805241,
0.9530372748417708,
0.9583877775759775,
0.9635662321056284,
0.967123989456938,
0.9657516648298725,
0.9555691039485088,
0.9338155805800543,
0.8997198096637369,
0.8541199786883186,
0.7988243563632114,
0.736108220047027,
0.6683558167262637,
0.5978283030266826,
0.5265326314433774,
0.45616526427746407,
0.38810657394157755,
0.32344556692652926,
0.2630190771444,
0.207453980282033,
0.15720477584303805,
0.1125819097465246,
0.07376866944289928,
0.04082698168389598,
0.013695842513659073,
-0.007809788426387798
],
[
0.05478316931099625,
0.10329827660533353,
0.1591613514607455,
0.2212109536172362,
0.2879563840835362,
0.3577007572982634,
0.42864824665622137,
0.4989922367797977,
0.5669893938228904,
0.631025467496062,
0.6896771352524305,
0.7417725425901273,
0.7864526575244062,
0.8232371908492052,
0.8521031072058151,
0.873586095081649,
0.8888525823296332,
0.8995352844063567,
0.907365111089272,
0.9138296792729415,
0.9199506357571373,
0.9262111897701713,
0.9326076529359688,
0.9388150818207693,
0.9445297096493381,
0.9498761525727631,
0.9552667468362813,
0.9606550995547637,
0.9645357118936048,
0.9637300317094049,
0.9544893057821191,
0.9340760115904221,
0.9016705447862123,
0.8580088728150648,
0.8047745809714187,
0.7441195956021941,
0.6783197573061615,
0.6095494928980096,
0.5397529637689612,
0.47058726478228907,
0.4034147108989925,
0.33932464771001697,
0.27916945087290745,
0.22360358023926763,
0.1731181841631111,
0.12806660292241356,
0.08867834931837792,
0.05506138956063489,
0.027196097358909932,
0.0049297525530792585
],
[
0.06097630616575456,
0.10914142820117334,
0.16472616008090857,
0.2265346319670053,
0.2930362508305472,
0.3624980475883252,
0.4330943376627294,
0.5029949048548887,
0.5704391739525284,
0.6338032762430824,
0.6916646288661865,
0.7428663228365817,
0.7865824656339159,
0.8223868243631292,
0.850330604612898,
0.8710309625222705,
0.8857074868466159,
0.8960135196456973,
0.9036823613111706,
0.910164172309287,
0.9163809875822035,
0.9226827479277611,
0.9289653809352085,
0.9348908209423439,
0.9402381350190233,
0.9452446316073432,
0.950357838691371,
0.9554567156842988,
0.959033349834395,
0.9581043673210927,
0.9491651381341926,
0.9296092004145678,
0.8985820375667145,
0.8567088984993761,
0.8055342051231899,
0.7470666611143423,
0.683450264021653,
0.6167478548754023,
0.5488165027328928,
0.4812517322608416,
0.41537869095267066,
0.3522714916147221,
0.2927860080385012,
0.237595451751636,
0.18722154068613728,
0.14205674547967828,
0.10237505916399314,
0.06833057091821404,
0.03994648263857614,
0.017104233611779485
],
[
0.06989116749290436,
0.11760220103028052,
0.1727620653758588,
0.2341454942457456,
0.300191297522735,
0.3691412804057843,
0.4391500616773235,
0.5083721502706917,
0.5750358010246579,
0.6375114605631174,
0.6943797076960061,
0.7445005520792018,
0.7870839571345378,
0.8217617005219724,
0.8486621267510437,
0.86847932220285,
0.882474641714688,
0.8923044234276615,
0.8996853361169554,
0.906019838723611,
0.9121295306348294,
0.9182436138483526,
0.9241808586670026,
0.929609420883798,
0.9343830368349993,
0.9387845019394648,
0.9432284674741053,
0.9475245434863001,
0.9502145430501125,
0.9485618848099786,
0.9393832012116317,
0.9202750832063439,
0.8903709591945991,
0.8501794464066991,
0.8010927698369698,
0.7449587014737751,
0.6837682875570903,
0.6194500778576456,
0.5537515929422095,
0.4881861017742368,
0.42402368150590014,
0.36230856354560764,
0.30388873609009076,
0.24944773467241432,
0.19953191090896472,
0.15456896919072216,
0.11487524832193496,
0.08065055646818631,
0.051962069203392525,
0.028727098188505606
],
[
0.08165390853104204,
0.1288027556496073,
0.18338122096596055,
0.2441431869176936,
0.3095097227386475,
0.3777107555564301,
0.4468930852365151,
0.515205510236737,
0.5808720171738945,
0.6422616573223623,
0.6979603555537847,
0.7468460331256354,
0.7881652223115807,
0.8216079854513333,
0.8473767387881022,
0.866232353626563,
0.8794636332409165,
0.8887111686313718,
0.8956540776925271,
0.9016361251925548,
0.9073791461156754,
0.9130078300258063,
0.91828950849571,
0.9229154056168958,
0.9268001859540665,
0.9302308651206422,
0.9335571158967167,
0.9365381977490153,
0.9378105851694692,
0.9349234279670273,
0.9250567238889098,
0.9060506160773902,
0.8770572338553486,
0.8384710756534476,
0.7915214285341049,
0.7378788903386895,
0.6793620131851514,
0.6177439560037711,
0.5546417639696513,
0.4914671489243887,
0.4294184171366546,
0.3694962672232776,
0.31253019143427374,
0.2592061526729291,
0.21008946434319964,
0.16563912550160653,
0.12621129762300642,
0.09205045834706305,
0.0632683972023208,
0.03981981810800139
],
[
0.09635314944666418,
0.14282725938008323,
0.19665745464590545,
0.25659002739130476,
0.32104451996363037,
0.388254346781308,
0.4563718147710376,
0.5235507346122706,
0.588018567212305,
0.6481476068638149,
0.7025309336153693,
0.7500640157214667,
0.7900280153245282,
0.8221673203820064,
0.8467502219253844,
0.8645907128767174,
0.8769886930734525,
0.8855486853148931,
0.8918882018160321,
0.8972786309752743,
0.9023458825793635,
0.9071325616530397,
0.9113816963231149,
0.9148202517511026,
0.9174110764253012,
0.9194266012895382,
0.9211488308659836,
0.922314064468013,
0.9216903499063778,
0.917136872608604,
0.9062122476955772,
0.8870199979162172,
0.8587602655786801,
0.8217243883018249,
0.776972467009909,
0.7259836659632842,
0.6703858665132738,
0.6117770214817864,
0.5516240603697223,
0.4912190983606577,
0.43167315402908335,
0.37393079004027396,
0.3187932542367006,
0.26694167613831704,
0.21895503562065233,
0.17531975886782258,
0.13642898861816177,
0.10257005778964623,
0.0738991999712808,
0.05040972638490249
],
[
0.11402972875647854,
0.15971168473829067,
0.2126172984542094,
0.27150360825242575,
0.3348071810904441,
0.400781696480226,
0.4675995150046511,
0.5334313099491029,
0.5965166445782017,
0.6552360607983478,
0.7081911171500656,
0.7542928042707526,
0.7928519125998912,
0.8236588989739393,
0.8470355000195021,
0.8638327784211169,
0.8753441178195743,
0.883116809623591,
0.8886801322000497,
0.893213374672129,
0.8972559117096415,
0.9007979286375749,
0.9035846927501608,
0.9053889620591413,
0.906215002127291,
0.9063190550878661,
0.9059320249123238,
0.904799418272751,
0.9018500788687541,
0.8952641310931566,
0.8829766899252056,
0.86336103157853,
0.8356886825632666,
0.800163272556577,
0.7576746366094178,
0.7094991008419261,
0.6570573434402383,
0.6017535600310004,
0.5448861291131588,
0.4876107474240461,
0.43093682572605135,
0.37574129139781254,
0.3227883379320016,
0.27274772025284266,
0.22620725741454883,
0.1836771221181812,
0.14558442489415246,
0.11225680941701754,
0.08389358856227402,
0.060527377737781385
],
[
0.13466496433682917,
0.1794332278306806,
0.23123213485181193,
0.2888509028460953,
0.3507628263701152,
0.41525965466588677,
0.48054948337796666,
0.5448328691755138,
0.6063710849612651,
0.6635583668673145,
0.7150055784406759,
0.759635430265547,
0.7967801720086233,
0.8262639686410381,
0.8484458853242128,
0.86419594389092,
0.8747823511575349,
0.8816736388232295,
0.8862842281402679,
0.8896776939984525,
0.8923214431838873,
0.894186455072047,
0.8950452716831017,
0.8947266074572071,
0.8932770693544869,
0.8909474473130523,
0.8879448069081484,
0.8840574551897749,
0.8783974444576594,
0.8694667228319917,
0.8555647202631266,
0.8353320887757414,
0.8081282235021628,
0.7740852144304269,
0.7339256847765835,
0.6887149608617403,
0.6396520212843291,
0.5879302026838749,
0.5346621809075809,
0.4808516886431142,
0.4273934750848884,
0.3750865154654012,
0.3246501523765636,
0.27673700752817554,
0.2319394364594627,
0.19078794145773526,
0.15374057153851095,
0.12116227044669503,
0.09329267529841279,
0.07020350960755095
],
[
0.1581700379787202,
0.2019029806706757,
0.252413685053683,
0.30854505016833456,
0.3688274603778775,
0.43160946796665073,
0.49515172968501286,
0.5576989513313559,
0.6175448273787552,
0.6731033252588295,
0.7229950761723145,
0.7661490493604305,
0.8019078087250633,
0.8301130822189771,
0.8511416506368555,
0.8658621178167196,
0.8754975783927287,
0.8814157717020318,
0.8848916138591544,
0.8868572563313446,
0.8877213867725184,
0.8874658846603759,
0.8859147766210997,
0.8829651653225181,
0.878714298076523,
0.8734264117372876,
0.8673166789928185,
0.860248524856114,
0.8515338999042529,
0.8399910435316563,
0.824266401812088,
0.803260172603425,
0.7764298979672697,
0.7438506799031271,
0.7060834226020003,
0.663977259841329,
0.6184972233562449,
0.5706103746210777,
0.5212280018078957,
0.4711877539407246,
0.4212580623458595,
0.37215092538151034,
0.32453413131111164,
0.27903823863690513,
0.23625637981829273,
0.19673624528513944,
0.1609638372004425,
0.12933819704998828,
0.10213567149891878,
0.07946598292879303
],
[
0.18438825323068941,
0.22696726963387193,
0.27601467637281374,
0.33044560149084623,
0.3888678029614037,
0.4497060699676428,
0.5112915104821572,
0.5719285039113811,
0.6299550947857616,
0.6838118187372916,
0.7321294596155541,
0.7738364847779952,
0.808272117080949,
0.8352761748168949,
0.8552200732127815,
0.8689478939422346,
0.8776162519313369,
0.8824702125030115,
0.8846256281957354,
0.8848785375332167,
0.8835902979250579,
0.8807771036472469,
0.8763372285904878,
0.8702513134118806,
0.8626813895991067,
0.8539287128207862,
0.8442492507803241,
0.8336108010733247,
0.8215372243528021,
0.8071539628181887,
0.7894352459846857,
0.7675299404396464,
0.7409990812832283,
0.7098726923429401,
0.6745563358541343,
0.6356800338892621,
0.5939648162966428,
0.5501379111094504,
0.5048952196853179,
0.4588958246946613,
0.41277176283462,
0.3671404620009668,
0.32261263311440724,
0.2797927059882449,
0.23927136730167559,
0.2016105976357584,
0.16732138201835278,
0.13683354873696807,
0.11045672639217019,
0.08833768385697771
],
[
0.21310683941228514,
0.25441646996244843,
0.301834389106308,
0.35436217398004904,
0.41070374814326543,
0.46937960590207706,
0.5288099308841223,
0.587375422482039,
0.643471662444973,
0.695573628368816,
0.7423229826504806,
0.7826402007770596,
0.8158457144389148,
0.8417553180941642,
0.8607086240817825,
0.8734988085256865,
0.8811932316142288,
0.8848939138715907,
0.8855448806993808,
0.883809589050828,
0.8800140839980353,
0.874226865059961,
0.8664404476423675,
0.8567357422159211,
0.8453573346471605,
0.8326688614940084,
0.8189980035317206,
0.8044421356200744,
0.7887452298247605,
0.7713292144147921,
0.7514768758454384,
0.7285735721168717,
0.7022856270709503,
0.6726070951353734,
0.639794361721648,
0.6042568810736954,
0.5664635504249637,
0.5268901302408435,
0.4860050285726332,
0.4442781553760073,
0.4021968701452815,
0.3602780270856117,
0.3190710099814207,
0.27915095124940753,
0.2411033962750075,
0.205501938982387,
0.17287961177104827,
0.14369383670187674,
0.1182849616860735,
0.09683620903583312
],
[
0.24406831464066125,
0.28399573158852615,
0.32962701848586534,
0.3800606965973312,
0.43411312240890865,
0.4904191015801717,
0.5475066771062498,
0.6038503114302882,
0.6579174929985669,
0.7082267696044241,
0.7534322584885416,
0.792438950017338,
0.8245321545609585,
0.8494798795297822,
0.8675606008533442,
0.8794863314618477,
0.8862106884482164,
0.8886746438121134,
0.8876444279005355,
0.8836608980934885,
0.877028781323075,
0.8678838734965223,
0.8563297653670394,
0.842564287185478,
0.8269335987529571,
0.8098885424173307,
0.7918560875603237,
0.7730839020516467,
0.753541102906349,
0.732934887097605,
0.7108384631191441,
0.6868614278280086,
0.6607749105964728,
0.6325436329748462,
0.6022801415806279,
0.5701726143936263,
0.5364312464146526,
0.5012705994988641,
0.46492154984133993,
0.4276563478615245,
0.3898114141999693,
0.3517987814734141,
0.31410362028379696,
0.2772695228910978,
0.24187472416196976,
0.20850199213538878,
0.1777036151559851,
0.14996180911714652,
0.12564584355363595,
0.1049747816465757
],
[
0.27698047389044633,
0.3154150727482627,
0.35911088809609765,
0.4072711768653249,
0.4588381883246531,
0.5125780127211659,
0.5671448040484494,
0.621124535203991,
0.6730719259743537,
0.7215596194134793,
0.7652571621322112,
0.8030473825448604,
0.8341642735847072,
0.8583038991969187,
0.8756523923317546,
0.8868060793089558,
0.8925773383495312,
0.8937305197735846,
0.8908551314091604,
0.884385172334922,
0.8746202000488938,
0.8617768634227585,
0.8460838013507689,
0.8278709529131503,
0.8076042486351203,
0.7858442507316031,
0.7631405055992456,
0.7399070860255913,
0.7163405458314304,
0.6924221679849496,
0.6679990358515522,
0.6428934583118744,
0.6169796798960413,
0.5901978131132053,
0.5625208481777472,
0.5339152046230057,
0.504327017783637,
0.4737017655951638,
0.4420249721393992,
0.40936509425722156,
0.37590359247416033,
0.34194533786751263,
0.3079098399225939,
0.27430785110625977,
0.24170865352279236,
0.21070202109709613,
0.18185695163156634,
0.15567809714081815,
0.1325622305098929,
0.11276339568216198
],
[
0.31152518123493766,
0.34835845373344837,
0.38997747030451896,
0.4356960983464862,
0.48459329780183213,
0.5355812892259085,
0.587457384624311,
0.6389365129685132,
0.6886765109386307,
0.7353160421755597,
0.7775449800254274,
0.8142189966836167,
0.844505687750713,
0.8680059047222547,
0.8847818603064802,
0.8952760151200129,
0.9001266203548594,
0.899907968298581,
0.8950421972735854,
0.8858768783350601,
0.8727240432005097,
0.8558939769100788,
0.8357519180539026,
0.812772778550129,
0.7875581190779453,
0.7607972081225531,
0.733180673135724,
0.7053005657821603,
0.6775806743835239,
0.6502653474444055,
0.6234606694817004,
0.5971913129393351,
0.5714325843931306,
0.5461034311306487,
0.5210405558763155,
0.49598805931782797,
0.4706236169961609,
0.44461754893501637,
0.41770457158635227,
0.38974578452065006,
0.36076610164457273,
0.3309629201481939,
0.30069011787918726,
0.27042523915475136,
0.2407274788842214,
0.21219172711433953,
0.18540140263132754,
0.16088154348893613,
0.13905505943049978,
0.12020976277875872
],
[
0.34736611649162746,
0.38249188354559105,
0.4218998255935352,
0.4650188717847535,
0.5110731736248056,
0.5591335482366586,
0.6081557298917869,
0.6570000850300904,
0.704443452907651,
0.7492036388657058,
0.7899980800975577,
0.8256528877799306,
0.8552561700360242,
0.8782921377312366,
0.8946683948633228,
0.9046338629904016,
0.908613274836679,
0.906979311210902,
0.9000044652473974,
0.887972739958259,
0.871226985679907,
0.8501833635362388,
0.8253531916756884,
0.7973664600828098,
0.7669729597416197,
0.7350054314290468,
0.7023091484915257,
0.6696613523528613,
0.6377104895193811,
0.6069529755178242,
0.577740488404371,
0.5502910538374081,
0.5246792407044013,
0.5008056103816518,
0.47837304719246054,
0.45690259315538123,
0.4357999120039087,
0.41445594547614123,
0.3923516781249897,
0.3691400574112912,
0.3446904503882064,
0.3190945600553059,
0.2926421222368691,
0.2657779751975519,
0.2390505385601993,
0.21305816072968942,
0.1883965742750322,
0.1656092664612211,
0.14514375335369423,
0.12732000707075974
],
[
0.3841555989333116,
0.4174706529972508,
0.4545403548213219,
0.49491200994027684,
0.5379614041787938,
0.5829279433776693,
0.6289388029969978,
0.6750146361552,
0.72006647251966,
0.762905109653142,
0.802285294223099,
0.837004725548904,
0.8660617877112582,
0.8888049084724177,
0.9049574888735533,
0.9145355735598133,
0.9177105571608748,
0.914643270119379,
0.9054765521895332,
0.8904544635526453,
0.8699694272681,
0.8445552448344277,
0.8148769040919812,
0.7817266492350599,
0.7460114162152145,
0.7087177207578538,
0.6708542255508864,
0.6333864668719204,
0.5971826468125527,
0.562979964842075,
0.5313633257032137,
0.5027363370293844,
0.4772716764747419,
0.4548541832366987,
0.435054904785713,
0.4171709844589859,
0.400333441888374,
0.38365163589320805,
0.36635262971708094,
0.34788336455471747,
0.3279613355576818,
0.3065764094736523,
0.2839570349932978,
0.26051659023171764,
0.2367923611708982,
0.21338462621020493,
0.19089937616741448,
0.16989654343488025,
0.15084642870790532,
0.13409914904291098
],
[
0.42154058632898866,
0.45294577160650173,
0.48755784879296005,
0.525044839605412,
0.5649388262176185,
0.6066553234796622,
0.6495033697816155,
0.6926764925398797,
0.7352336445942936,
0.7760924854014339,
0.8140570393898054,
0.8479022069429375,
0.8765304570461304,
0.8991376397517047,
0.9152340799194345,
0.9245657377190769,
0.9270187957233204,
0.9225328168863434,
0.9111356931298622,
0.8930546534759274,
0.8687505092128727,
0.8388857361712598,
0.8042846208721374,
0.7659058481547822,
0.7248186572565257,
0.6821692861493504,
0.6391340424061872,
0.5968660913241026,
0.5564461909683196,
0.5188403627960563,
0.48485481856891627,
0.45507187119012743,
0.42976196653496757,
0.40879722391776424,
0.39161871028000916,
0.377298974761414,
0.3646929644293493,
0.352628579006728,
0.3400817484133073,
0.32629862181536246,
0.31085117579437604,
0.2936332624040359,
0.274816073623126,
0.2547833156755744,
0.23406094120762677,
0.21324961713709234,
0.19296344550344857,
0.1737765943136721,
0.15617997215513857,
0.14055143359885935
],
[
0.45916792689280467,
0.48856966238799115,
0.5206138369997595,
0.5550906354717511,
0.5916915340497441,
0.6300132849890111,
0.6695543585282318,
0.7096909252972415,
0.7496414546227096,
0.788443566614723,
0.8249638996839146,
0.8579649092657644,
0.8862529357588315,
0.9088565384459506,
0.9250450544476629,
0.9342628105972531,
0.9360881769709525,
0.930231227748786,
0.9166136874643167,
0.8954662353842056,
0.8673356718324436,
0.8330226002346063,
0.7935138830810649,
0.7499357942935193,
0.7035214367640794,
0.6555787197856602,
0.6074518587913265,
0.5604776244701322,
0.515939895899543,
0.4750204641375078,
0.43873465626803554,
0.40783691394865196,
0.38269584347639535,
0.3631745225664201,
0.34858615113663344,
0.3377785468469895,
0.32933089504158525,
0.32179256720464583,
0.31389438554453825,
0.30469004272736055,
0.29361491980706667,
0.2804744036073306,
0.2653873401372159,
0.24870981995485086,
0.23095620927322064,
0.2127258513273077,
0.19463859376475334,
0.17728033696015033,
0.16116004862214095,
0.14668055440358807
],
[
0.4966889261436695,
0.5240011456709552,
0.5533782270497145,
0.5847330934852378,
0.6179183012170153,
0.6527147433254511,
0.6888148526580782,
0.7257839303920725,
0.7630089508656113,
0.7996592283377129,
0.8346776740287815,
0.8668281035837714,
0.8948283498376085,
0.9175265589585934,
0.9339260728523673,
0.943146647489453,
0.944444124962258,
0.9372925503248601,
0.921512734885441,
0.897355015570825,
0.8654666758717072,
0.8267929133245006,
0.7824834409526544,
0.7338301805295646,
0.6822283619541828,
0.6291460310110356,
0.5760921837604395,
0.5245803019023644,
0.4760858543673285,
0.4319919054609654,
0.3935096460388599,
0.3615585151894239,
0.3366060278303761,
0.31851076626154,
0.3064608199685582,
0.2990803103963911,
0.29467554884284153,
0.2915237510875446,
0.2881201212077207,
0.28333728713976425,
0.27648528054708776,
0.2672899282182096,
0.25582311976460936,
0.24241532162361162,
0.2275687782453224,
0.21187948079385432,
0.19597034749165887,
0.18043617586696514,
0.16580109227148332,
0.15248981914364101
],
[
0.5337632833128012,
0.5589097240392834,
0.5855341982582418,
0.6136720639518904,
0.643337247109101,
0.6744956863517646,
0.7070351176978636,
0.7407128733009217,
0.7750906271242543,
0.8094794740049648,
0.8429120365328098,
0.8741688332454873,
0.9018911622017052,
0.9247376871127582,
0.9414278264253457,
0.9507436346159197,
0.9516107574244889,
0.9432628115265616,
0.9254234114182408,
0.8983746177347589,
0.8628737336767334,
0.8200124255222447,
0.7710998299137093,
0.717588490548575,
0.6610311246326843,
0.6030514873406183,
0.5453174887514918,
0.48951009995176215,
0.43728300178307117,
0.3902043809733503,
0.34966622134040887,
0.31674416550125517,
0.2920049808033422,
0.2753081633765847,
0.26572047590719433,
0.2616454377242479,
0.2611231443472494,
0.26216920579173464,
0.26305626894628303,
0.2624901144340886,
0.25966858899302464,
0.2542477042852681,
0.24625776672705768,
0.23600518379309054,
0.22397904774099697,
0.21076954624861854,
0.19699964221281818,
0.18326987256678606,
0.17011632122347797,
0.15798229147472975
],
[
0.5700624576979887,
0.5929791750663104,
0.6167822752044299,
0.6416283962082018,
0.6676916138289768,
0.695121781061556,
0.7240000488361651,
0.7542751451098999,
0.785686764398683,
0.8176959889944893,
0.8494379900841038,
0.8797251546089053,
0.9071323798887292,
0.9301275696193771,
0.9471393209535717,
0.9566091758254976,
0.9571323703645013,
0.9477005781092598,
0.9279435572741288,
0.898183033341105,
0.8592892361809232,
0.8124962177259037,
0.7592649568084168,
0.7012006597972938,
0.6400064415242804,
0.5774550432734309,
0.5153653185057732,
0.45557474225816497,
0.3999003500229193,
0.35007766227035536,
0.3076619939023821,
0.2738734544109003,
0.24937673273289157,
0.23403821030015515,
0.22680852724169687,
0.22587703986428087,
0.2290296247699798,
0.23403572075449336,
0.2389619311046337,
0.24236380190143514,
0.24334150726076065,
0.2414911722025339,
0.2368063187179686,
0.22957008846092886,
0.2202567373958927,
0.20944773001501482,
0.19776271194799833,
0.18580453177632295,
0.17411780500843865,
0.16316093592813874
],
[
0.6052725489043349,
0.6259104834445943,
0.6468435039371543,
0.6683475981158001,
0.6907541791006324,
0.7143932205654872,
0.7395344415219195,
0.7663141955702394,
0.7946504435368404,
0.8241600748417705,
0.8540920559440339,
0.8833036605705522,
0.9103117358294466,
0.9333988432873379,
0.9507076964085122,
0.9603479297386989,
0.9605934568427229,
0.9501968649794632,
0.9286976177039881,
0.8964601987632224,
0.8544624602846764,
0.8040700966872263,
0.7468842383026097,
0.6846522081367664,
0.6192184454302487,
0.5524961879104839,
0.48644571026859185,
0.42304876821011544,
0.36426986721679583,
0.31199272663860234,
0.26791596959613845,
0.23338828778607412,
0.209167379539283,
0.19513224983904476,
0.19012449973846568,
0.19213098844305232,
0.19870252573002345,
0.20738315448154365,
0.21605297016904546,
0.2231356682199942,
0.22764888155942298,
0.22913818260979613,
0.22756396853266103,
0.22318586746139157,
0.2164608956870815,
0.20795843842935713,
0.19829119689408436,
0.18806072147594777,
0.17781660140982491,
0.16802878241378127
],
[
0.6390968163185785,
0.6574242099277474,
0.6754617555044229,
0.6936021050266368,
0.7123294262377623,
0.732147086774915,
0.7535057105719548,
0.7767226390965835,
0.8018910532713155,
0.8287863454052922,
0.8567797686912625,
0.8847838634682833,
0.9112655431553943,
0.9343321319329924,
0.9518551219728024,
0.9616325537723138,
0.961638003497829,
0.9503949421474175,
0.9273564849109062,
0.8929260832150752,
0.8481744908472725,
0.7945820042212346,
0.7338747228633465,
0.6679294415174666,
0.5987212747317817,
0.5282940981827171,
0.45873894170513824,
0.39216879812339916,
0.33067918264628166,
0.27628205365710745,
0.23079717264573107,
0.19568116709434502,
0.17177376317859872,
0.15897040335605583,
0.15601331567042775,
0.1607064346096656,
0.1703933928506295,
0.18241890293517282,
0.19449839459996254,
0.20494311665342135,
0.21270303685112524,
0.21728105529377417,
0.2186064839805686,
0.2169140274380461,
0.21264039652542932,
0.20633921667155053,
0.19861247009654903,
0.19005672880327962,
0.18122296713275,
0.17258911765200147
],
[
0.6712580149626726,
0.6872624864701927,
0.7024053712439576,
0.7171924545273151,
0.73225410674761,
0.7482576268115891,
0.7658241273735528,
0.7854424498512903,
0.8073745012715257,
0.831553048860494,
0.8574765995711028,
0.8841211619653798,
0.9099124144436008,
0.9327957832993308,
0.9503932488941795,
0.960221774575925,
0.9599890044162366,
0.9480108369386933,
0.9236579235644583,
0.8873584788467566,
0.840252312233707,
0.7839125491104888,
0.7201725482017588,
0.651024297797631,
0.5785616269766135,
0.5049480400778776,
0.4323937332719672,
0.363129317191841,
0.2993646122217735,
0.2432196005556584,
0.19661180828560032,
0.16108105388366944,
0.13752975695034952,
0.12586837807609952,
0.12475345595181608,
0.1318367465937298,
0.1442916352884348,
0.1592942595930671,
0.17441878085233453,
0.1878836615809576,
0.1985847943221165,
0.20598798011070174,
0.2099915996054018,
0.2108029494716992,
0.2088348929113898,
0.20462146776034373,
0.19875016166504422,
0.1918089378491309,
0.18434663532168882,
0.17684570238459485
],
[
0.7015007747294918,
0.715190909824234,
0.7274685097870659,
0.7389479201367323,
0.7503970435332096,
0.7626351566708396,
0.7764409238133865,
0.7924624511999692,
0.8111203864130438,
0.8324994391594166,
0.856226371359179,
0.8813471760332999,
0.9062559062314681,
0.9287518779947522,
0.9462344870133135,
0.9559777963550837,
0.9554692544756802,
0.942855379081198,
0.9174267830684673,
0.8796088750374741,
0.8305806520937058,
0.7719836487132828,
0.7057390661198448,
0.63393842866994,
0.5587810743863795,
0.4825380064430703,
0.407526107245056,
0.3360794521823855,
0.2705053250371135,
0.2130116131625538,
0.1655900235160629,
0.12983674668742806,
0.10668946267063717,
0.09606167400323251,
0.09654487272959211,
0.1056823360089405,
0.12052112908682899,
0.1381036395203512,
0.1558874317940444,
0.17201739066761534,
0.18534639503972272,
0.19530576013637502,
0.20176130377792068,
0.2048896734379161,
0.20507614989538792,
0.2028314164027767,
0.19872483847219757,
0.19333230148048763,
0.18719714316144398,
0.18080300605904276
],
[
0.7295942878874156,
0.7410006547998315,
0.7504725860131041,
0.7587270197278728,
0.7666584287472685,
0.7752238959990805,
0.7853446161987575,
0.797813360213665,
0.8131962728286358,
0.831720103759358,
0.8531364823442089,
0.8765662829814203,
0.9003825936715308,
0.9222568129191521,
0.9393975297035864,
0.948880044849653,
0.9480236791809911,
0.9348570553888831,
0.9085915341805689,
0.8696137070564637,
0.8191099165575892,
0.7587642886193973,
0.6905650405710363,
0.6166861755446846,
0.5394179847460525,
0.4611256076338489,
0.38421912787842594,
0.31112126923010264,
0.24421966825334557,
0.18579006544315935,
0.13787495752337853,
0.1020998427194647,
0.0794066572345673,
0.06968805916315612,
0.0714994041954935,
0.08232764149982297,
0.0991411706740476,
0.11888771304079648,
0.13893496424229168,
0.15737217740134268,
0.17301628989823026,
0.1852637079770153,
0.19394481992538148,
0.19920210205015776,
0.20138963464774162,
0.20099123164416544,
0.1985547806617951,
0.19464086853927998,
0.18978418540874065,
0.18446644530251166
],
[
0.7553355927380698,
0.7645111450402029,
0.7712681496698204,
0.7764181601036133,
0.7809687967121902,
0.7859989566085198,
0.792555876931995,
0.8015606824206705,
0.8137091355509728,
0.8293559299437754,
0.8483692374136922,
0.869947422893131,
0.8924542958100817,
0.9134546176030369,
0.9300035975315083,
0.9390272941766731,
0.9377316227072393,
0.9240739551141508,
0.8971902529428215,
0.8573979160865962,
0.8058587889591333,
0.7442726667277053,
0.6746725123139832,
0.5992962133322969,
0.5205089474624749,
0.4407552349702609,
0.3625236996909385,
0.2883100266125221,
0.22056456905258648,
0.1616106543978464,
0.11351818075115228,
0.07791504209024946,
0.055717286023981294,
0.04677666674753089,
0.049638695027818036,
0.06178457429627049,
0.08015319603914117,
0.10164136727285589,
0.12355786489479537,
0.14395155093321343,
0.16160536369878742,
0.17587826570532972,
0.186561954035106,
0.1937613952312367,
0.19779620822846156,
0.19912020433332,
0.1982567860029093,
0.19574832138190046,
0.19211796535197212,
0.18784260924248142
],
[
0.7785537523641924,
0.7855736150463878,
0.7897374604124491,
0.7919405469316334,
0.7932878063264227,
0.7949627289206176,
0.798121340564368,
0.8037958828883369,
0.812794174317952,
0.825581448644086,
0.8421287652366333,
0.8617105856781336,
0.882693767095627,
0.9025622263052026,
0.9182616798641164,
0.9266219732677138,
0.9247873747221597,
0.910677675427359,
0.883361250095964,
0.8430693407462393,
0.7909109537293666,
0.7285744881787075,
0.658114207758806,
0.5818117894104043,
0.5020896660280553,
0.421455497692764,
0.3424604887039583,
0.2676565700798937,
0.1995384655285536,
0.14045644966372217,
0.09248448721783176,
0.05722708599270754,
0.03555020814100507,
0.02725776633231669,
0.030903347375481727,
0.044002989735873466,
0.06351346318429363,
0.0863270686971338,
0.10973094161213748,
0.1317442079786263,
0.15111363860532578,
0.16715769465551344,
0.17962639159716498,
0.1885842908841504,
0.1943137502505191,
0.19723587014616506,
0.19784693089147365,
0.19666847752136418,
0.19420951374443995,
0.19093945375110444
],
[
0.7991152310483411,
0.8040758599792243,
0.805797803902613,
0.8052452792949385,
0.8036028681357399,
0.8021409221098705,
0.8021068482369789,
0.8046265295570431,
0.8106016205293742,
0.8205886601235186,
0.8346432330919529,
0.8521077794205232,
0.8713640518257557,
0.8898478317300442,
0.9044450517733199,
0.9119420077332465,
0.9094655407569996,
0.8949220552279229,
0.8673222016510194,
0.826805423100566,
0.7744066577510861,
0.7117777880384881,
0.6409706904094667,
0.5642896489572075,
0.48419533711102414,
0.40324090004747504,
0.32402288321469497,
0.24913172541157091,
0.18108751948622404,
0.12224673513917594,
0.07466498450388548,
0.0399011134727576,
0.018756026773754986,
0.010987675333221203,
0.015170790585384508,
0.02888561045054716,
0.04914859928058868,
0.07289244143325502,
0.09742088888064704,
0.12073277017511352,
0.141536099177614,
0.15910609129675002,
0.17314852023582838,
0.18368509926519072,
0.19095855972627684,
0.19535497826209125,
0.1973412232410705,
0.19741571325744167,
0.19607094868892128,
0.19376644793345688
],
[
0.8169307705062799,
0.8199482418949169,
0.8194050930551551,
0.8163162329260373,
0.8119275222981798,
0.8075785048746109,
0.8045907485453324,
0.8041664487847859,
0.8072829273223678,
0.8145684524100563,
0.8261424019625804,
0.8413986215938671,
0.8587430218577939,
0.8756054684453815,
0.8888642080201276,
0.895310463002073,
0.892089643932315,
0.8771135184207545,
0.8493458189873831,
0.8088357442898669,
0.7565308050208382,
0.694025168727704,
0.6233457289626382,
0.5467978796650813,
0.46686058523307233,
0.3861136888851075,
0.3071807692335469,
0.23267223336089027,
0.1651142321779432,
0.10684923351851416,
0.059894293971764045,
0.025745673707498917,
0.005132644552308885,
-0.002226421648119925,
0.002275168083703427,
0.016302898624690032,
0.03696728003776306,
0.06128046855474523,
0.0865936403764519,
0.11089892285387759,
0.1328664225821431,
0.15172613450350125,
0.1671374533851694,
0.1790771793905257,
0.1877464128754206,
0.19349422886977352,
0.19675609679999595,
0.19800527602344697,
0.19771565484665343,
0.19633465935893257
]
],
"zauto": true,
"zmax": 0.9673003777832128,
"zmin": -0.9673003777832128
},
{
"autocolorscale": false,
"autocontour": true,
"colorbar": {
"tickfont": {
"size": 8
},
"ticksuffix": "",
"x": 1,
"y": 0.5
},
"colorscale": [
[
0.0,
"rgb(255,247,251)"
],
[
0.14285714285714285,
"rgb(236,231,242)"
],
[
0.2857142857142857,
"rgb(208,209,230)"
],
[
0.42857142857142855,
"rgb(166,189,219)"
],
[
0.5714285714285714,
"rgb(116,169,207)"
],
[
0.7142857142857143,
"rgb(54,144,192)"
],
[
0.8571428571428571,
"rgb(5,112,176)"
],
[
1.0,
"rgb(3,78,123)"
]
],
"contours": {
"coloring": "heatmap"
},
"hoverinfo": "x+y+z",
"ncontours": 25,
"type": "contour",
"x": [
1e-06,
1.3011511650442548e-06,
1.692994354296022e-06,
2.2028415765056147e-06,
2.866229883678204e-06,
3.729398352432554e-06,
4.852511011181743e-06,
6.3138503555892e-06,
8.215273746089953e-06,
1.0689313005882424e-05,
1.390841207112662e-05,
1.809694657026198e-05,
2.354686311364001e-05,
3.063802837345029e-05,
3.986470631277378e-05,
5.1870009063012666e-05,
6.749072272319499e-05,
8.781563250096393e-05,
0.00011426141253772724,
0.00014867137004306603,
0.00019344392634026088,
0.0002516997901283655,
0.0003274994751669172,
0.0004261263236648159,
0.0005544547624925005,
0.0007214294601814526,
0.000938688782612345,
0.0012213760031100258,
0.0015891948094037057,
0.002067782677737912,
0.0026904978401970136,
0.0035007443993213955,
0.004554997653699184,
0.005926740503884541,
0.007711585311544345,
0.010033938212454078,
0.013055670395116691,
0.01698740074503987,
0.02210317627048227,
0.028759573555516536,
0.03742055263793628,
0.04868979566145066,
0.06335278435066323,
0.0824315491666629,
0.10725590623460621,
0.13955614735503497,
0.18158364372009145,
0.23626776957937787,
0.3074200836506151,
0.4
],
"xaxis": "x2",
"y": [
0.0,
0.02040816326530612,
0.04081632653061224,
0.061224489795918366,
0.08163265306122448,
0.1020408163265306,
0.12244897959183673,
0.14285714285714285,
0.16326530612244897,
0.18367346938775508,
0.2040816326530612,
0.22448979591836732,
0.24489795918367346,
0.26530612244897955,
0.2857142857142857,
0.3061224489795918,
0.32653061224489793,
0.3469387755102041,
0.36734693877551017,
0.3877551020408163,
0.4081632653061224,
0.42857142857142855,
0.44897959183673464,
0.4693877551020408,
0.4897959183673469,
0.5102040816326531,
0.5306122448979591,
0.5510204081632653,
0.5714285714285714,
0.5918367346938775,
0.6122448979591836,
0.6326530612244897,
0.6530612244897959,
0.673469387755102,
0.6938775510204082,
0.7142857142857142,
0.7346938775510203,
0.7551020408163265,
0.7755102040816326,
0.7959183673469387,
0.8163265306122448,
0.836734693877551,
0.8571428571428571,
0.8775510204081632,
0.8979591836734693,
0.9183673469387754,
0.9387755102040816,
0.9591836734693877,
0.9795918367346939,
1.0
],
"yaxis": "y2",
"z": [
[
0.19545757502695119,
0.18425278941601478,
0.17751652756259279,
0.1746115615978676,
0.17419717258304426,
0.1746115751238386,
0.174276672289091,
0.17195278076944387,
0.16683537646331628,
0.15855938785362292,
0.147167667471731,
0.13307100017489726,
0.11700324791724168,
0.09995537098321353,
0.08304871235540588,
0.06728762735153146,
0.05317266532851802,
0.040361666718844925,
0.027800036073599384,
0.014496909138929712,
0.0034460576244834127,
0.016128098541190967,
0.03040322743817096,
0.043045789925426126,
0.05331461504565421,
0.0609723478631762,
0.06603052858167091,
0.06838373602257508,
0.06757998847932635,
0.0628876245330765,
0.05356330870105258,
0.03913653863587301,
0.019657825388482673,
0.005968177385012576,
0.03293935152192053,
0.06307574695942751,
0.09452770112248238,
0.12631326813968594,
0.1576490666700262,
0.18792508018797013,
0.2166921504964058,
0.24364780853240797,
0.2686198519584268,
0.29154816795690935,
0.31246531046793175,
0.3314763319101921,
0.3487384501669156,
0.3644412682133061,
0.37878839012115867,
0.39198132352378534
],
[
0.1782180174422285,
0.16629708321249578,
0.15962296706802787,
0.15752488289532512,
0.158405075740339,
0.16027574398079494,
0.16130261145821087,
0.16009948849192207,
0.15580234789506803,
0.14803981080554712,
0.13687877585533662,
0.1227766258156427,
0.10654436788235716,
0.0893069791978493,
0.07241922144190537,
0.0572404228802199,
0.04463572198460573,
0.03432399883038547,
0.024849980711371962,
0.014794766022504787,
0.006309333699011703,
0.013543577466197824,
0.025753764843303762,
0.03698023050916664,
0.046086528343005834,
0.05285526940884601,
0.05746659315536451,
0.05993576104119786,
0.05978184914727884,
0.056150637631727986,
0.04821461036490146,
0.035639525835880974,
0.019777624129796008,
0.01584925191016655,
0.03777941992458039,
0.06595687542787453,
0.09610968090098043,
0.12684896708816845,
0.15727235427194114,
0.1867197953905507,
0.21471716986493705,
0.2409496983376205,
0.26524106926463065,
0.2875331482638227,
0.30786507177789085,
0.3263516420304985,
0.3431614332252084,
0.3584953508903932,
0.37256662231902066,
0.38558329562584925
],
[
0.1609205192685702,
0.14813274630610987,
0.14151936011593427,
0.14039056109254194,
0.14280335368891156,
0.14634799174225685,
0.1488933029797389,
0.14891056678713577,
0.14549555356936048,
0.13828736292278776,
0.12738397386560057,
0.11328340734779986,
0.09685287208874577,
0.07931891340092947,
0.062252698015101984,
0.04744592296891865,
0.03636161660200868,
0.028909801058242403,
0.02294367268394613,
0.016256759444650614,
0.009783380972119953,
0.012028192290636366,
0.02157990700091168,
0.031292375495162214,
0.03917378379225213,
0.044987255773479,
0.049156539278477226,
0.05187708034041762,
0.05264184503483171,
0.05048642368891258,
0.04462153283810314,
0.0352410873608119,
0.02570220504470709,
0.02766959800364019,
0.04579049968997783,
0.07118262259778442,
0.09944180549942706,
0.1287184306146469,
0.15791718032189972,
0.1862877375739599,
0.21330907693557424,
0.23864163721932227,
0.2620978142772046,
0.2836174838393483,
0.30324446858664533,
0.32110276050528025,
0.3373725055000505,
0.3522664242768203,
0.3660077642172803,
0.37881106930935005
],
[
0.14371620734475607,
0.12986136164435885,
0.12329922235130254,
0.12335058899577425,
0.12758646310462687,
0.13304053586751807,
0.1372483714289629,
0.1385615896197755,
0.13606965850383074,
0.129447251763871,
0.11883504587024485,
0.10476760929003985,
0.08814331392238044,
0.07023669264298556,
0.05276281146279928,
0.037963259430580445,
0.02824587120254485,
0.023930205579417205,
0.021479224478056766,
0.01743587404866644,
0.01180419581767104,
0.010521090674635712,
0.017502981816478018,
0.025859891931979993,
0.032547051029212556,
0.037358415219896066,
0.04109528994420376,
0.04420956328087076,
0.046138306601271085,
0.04578324260141173,
0.04245602716236682,
0.036905968191774816,
0.03306514025826069,
0.03829203378567844,
0.054565049817381965,
0.07755419214626379,
0.10383815134723184,
0.1314862139256905,
0.15928781351594407,
0.18641835430666243,
0.21231217542513417,
0.23660432590002858,
0.2590952120490331,
0.2797226683676298,
0.29853590486623444,
0.315669412639137,
0.3313165465279241,
0.34570344976653916,
0.3590645931871057,
0.3716214976492438
],
[
0.1267973228905389,
0.111606055633657,
0.10507464437972502,
0.10659341671522035,
0.11300918007546623,
0.12061253233505029,
0.12659191107139756,
0.12923339041624474,
0.127671250616508,
0.12164857876547026,
0.11136530214340873,
0.09739388594870244,
0.08064366609925441,
0.06237582939481193,
0.04431401965702136,
0.029003091112355883,
0.020268677906849913,
0.019373744115187296,
0.020132476858675252,
0.01792870360885105,
0.012577289037586727,
0.008559846884722657,
0.013364683657265675,
0.020704172375516007,
0.026268890158684277,
0.03002002529953463,
0.033327159002988285,
0.03697932956703799,
0.040261054340031695,
0.041871804916480806,
0.0412249756101526,
0.03940460489594692,
0.039939075503486715,
0.047406401345009945,
0.06291011890392077,
0.08415729129606311,
0.10868220723639571,
0.1347302198794778,
0.16108631673493173,
0.18689519332649135,
0.2115648462506558,
0.2347135397229877,
0.25613456190169737,
0.27576726491546005,
0.29366947978900876,
0.3099894177829365,
0.32493679251562163,
0.33875397581727645,
0.3516887613659879,
0.3639707074148755
],
[
0.11041281457929511,
0.09351828901027485,
0.0869816460471484,
0.09038069001298123,
0.09940928233147947,
0.10937372759573345,
0.11716359179661917,
0.12109812034929335,
0.12042272342251657,
0.1149855012551599,
0.10506538678660535,
0.09128194560736223,
0.07455102441537435,
0.05608102859726278,
0.03745467668304233,
0.02109067092224963,
0.012554474241234676,
0.015518728877082064,
0.018883945161876244,
0.017859447268761385,
0.012637170076497301,
0.006426603747998095,
0.009328373969558025,
0.016019841681540564,
0.020499402867780334,
0.0230882351813824,
0.025953554673473746,
0.030286365176838144,
0.03500956480900823,
0.03853983086549605,
0.040399795534304554,
0.041816286696633904,
0.04567627564180021,
0.0549325218765783,
0.0702805043704154,
0.09038706601311802,
0.1134847144131871,
0.13808121563701933,
0.16303706457149136,
0.187511208766835,
0.21090938483011004,
0.23284667575227852,
0.25311785069265935,
0.2716701168686024,
0.28857532914458583,
0.3040004260825549,
0.3181761430390195,
0.3313651440514097,
0.3438316075587012,
0.3558148058615478
],
[
0.09489250338372981,
0.07579147210926279,
0.06919139699934278,
0.0750980365672238,
0.08723356712844461,
0.09967695641860269,
0.10919911550029648,
0.11429901091825577,
0.1144033948722953,
0.10949755109657773,
0.09995807901249827,
0.0864677434923046,
0.06996598949349037,
0.05162164524363502,
0.03284028766040853,
0.015453124206354397,
0.005699519578768027,
0.012983814799147876,
0.017882200973509812,
0.017519350657574147,
0.012587857490196565,
0.005314629806109669,
0.006068077475001832,
0.012154973146499534,
0.0154773240474515,
0.016742744694156046,
0.019140269275528494,
0.02428660307158159,
0.030378303279046188,
0.03555294208672854,
0.03952618183862242,
0.043595071599817216,
0.05006208430716778,
0.06087298969406379,
0.07643655693826204,
0.0958767468328047,
0.1178909856133235,
0.14124156877289684,
0.16490275456945444,
0.18808049001404215,
0.21020030088831415,
0.23088863957807174,
0.24995199677057559,
0.26735346790122744,
0.2831859556643129,
0.2976416757414776,
0.3109784967704566,
0.32348472523945027,
0.33544500232582325,
0.3471106312441044
],
[
0.08068255331938615,
0.05869352953611762,
0.05193971044683866,
0.06135118823967296,
0.07705089137656318,
0.09188649089314614,
0.10289713123060593,
0.10892585499189829,
0.10963192341423873,
0.10515480285589932,
0.09598053312388347,
0.08287298267569432,
0.06682756270828881,
0.04903675843635411,
0.0308781568349324,
0.014034300970187541,
0.004530488457225725,
0.012363283157484084,
0.017231754949861733,
0.017120814817186258,
0.01280429788716522,
0.006318933886586301,
0.004984321421952021,
0.009463414373575946,
0.01146069986334154,
0.01123256824791929,
0.01313338715188874,
0.01917479110183044,
0.026328219908089097,
0.03267683207119515,
0.03827363392154565,
0.04446911588605894,
0.053062058320955105,
0.0652867677916752,
0.08129743209531139,
0.10042542310387481,
0.12166481302998887,
0.1439888342932954,
0.1664924582160734,
0.18844599678688112,
0.20931062892279867,
0.22873674305880615,
0.24655260997793838,
0.2627458567373134,
0.27743846546696194,
0.29085571877755734,
0.3032900815823399,
0.3150621607155308,
0.3264822097435704,
0.3378165388829438
],
[
0.06838650459180301,
0.04266116957647272,
0.03562788843045135,
0.05012115151632437,
0.06950565436169566,
0.08630935650825515,
0.0983754725637214,
0.10499202855808416,
0.10605588983621343,
0.1018542569206052,
0.09298289342665392,
0.08029956843742334,
0.06488727292937008,
0.048029360242490576,
0.031243565727658035,
0.016672650454750356,
0.009673224363509397,
0.013366768289110294,
0.016826158822224716,
0.016648941070968756,
0.01321009874482506,
0.008296851085315526,
0.006074457439862674,
0.007934038091635742,
0.008590205256732028,
0.006924149878601528,
0.008308500933296239,
0.015120488454551183,
0.022754711871527947,
0.029698643966390766,
0.036441129758978834,
0.04434928912579642,
0.054742159891456546,
0.06827899547339372,
0.0848759838746526,
0.10394567941268773,
0.12466606835408155,
0.14617068133416844,
0.16766362822603997,
0.18848368417858644,
0.2081361985865278,
0.22630447947204033,
0.24284714996135412,
0.2577847031479498,
0.27127665627482506,
0.2835900799865449,
0.29506075400896226,
0.30604958989055187,
0.31689875222430564,
0.32789321745359984
],
[
0.0587694024333554,
0.028633801145915017,
0.021305041371113696,
0.04284457052371059,
0.06514023472560394,
0.08309546955735045,
0.09562971721025339,
0.10242170191841013,
0.10355376936291237,
0.09943110078446771,
0.09074725160593801,
0.07845695301255289,
0.06374796782972386,
0.04802207228901356,
0.032940062899593996,
0.020719890418223853,
0.0146004053668555,
0.014958950202520032,
0.01635498892067889,
0.015872507833752113,
0.013414847927943521,
0.009969629288356903,
0.007402436869159307,
0.006984537659603487,
0.006687660975003601,
0.004414252175081476,
0.005261463628443491,
0.01212982282292013,
0.019477583087788936,
0.02644944469605269,
0.03394843600504184,
0.04327531827598304,
0.055237567885777265,
0.06999271485842051,
0.08724512770900633,
0.10642802078076738,
0.12682937016807927,
0.1476959703259147,
0.16832019970103024,
0.18810380113456932,
0.20659809045733013,
0.22352420306708454,
0.23877745488845334,
0.25241855323885076,
0.26465293441666893,
0.2757988335085385,
0.2862452548198295,
0.2964028508015808,
0.3066532683595311,
0.317304533954439
],
[
0.0525989254610174,
0.019292327067154127,
0.013460372398848524,
0.04082213032204517,
0.06409770284857882,
0.08215145112918955,
0.09451433479492824,
0.1010544047652345,
0.10195064319250534,
0.09768312190895348,
0.08902260577104054,
0.07701408311625979,
0.06295086923304534,
0.04834160781635243,
0.03488376143773322,
0.02441979713800974,
0.018427780213734563,
0.01628998529007935,
0.015463140109288906,
0.014485090183453992,
0.013040990018771773,
0.010890544040306847,
0.008162923162530915,
0.005998335729182205,
0.005271197032149376,
0.003940437047087953,
0.004327469470085246,
0.009915149377063262,
0.016280247986948007,
0.022830555073845737,
0.03083056805001948,
0.04138686641954435,
0.05473450451198369,
0.07059876826594554,
0.08851640339236808,
0.10791614726237515,
0.12814604034715354,
0.14852487716653281,
0.16840857346988866,
0.18725023416391984,
0.20464364469259458,
0.2203488479575961,
0.23430168337066587,
0.2466089979310866,
0.2575300686567761,
0.267444102604615,
0.2768044206979207,
0.28608244756459617,
0.2957083576348883,
0.30601841060461915
],
[
0.050199129009686164,
0.019549336284283587,
0.018964033306791948,
0.04379652426736947,
0.06593849000425053,
0.08313188854188064,
0.09476029250651981,
0.10066744800303554,
0.10104370235602939,
0.09640164336024146,
0.08756550073896167,
0.0756572629256364,
0.06206737888146668,
0.048390507193369965,
0.03627618719236967,
0.027053310998869224,
0.02098860182664298,
0.016960726743673507,
0.013925051358674372,
0.012260086311597288,
0.011940115358145166,
0.011104432464344517,
0.008476999245344927,
0.004998030122511371,
0.004033067946056489,
0.004174637137642504,
0.004271476654546154,
0.008011278027654473,
0.012997810134354944,
0.01884398895486717,
0.027240211348997692,
0.038903822207298634,
0.05345195204337519,
0.070282530178871,
0.08882347791554057,
0.10848902010110426,
0.12864963289331866,
0.14865961307539038,
0.1679127732162175,
0.1858986739038708,
0.20224642272032736,
0.21675287476455088,
0.2293957582447618,
0.2403323143769294,
0.24988281736237794,
0.25849751021165224,
0.26670636645211726,
0.2750544858068262,
0.28403140974115404,
0.29400774300385535
],
[
0.05101548406597706,
0.027142925923222427,
0.029661390764710877,
0.049899719215214244,
0.06980073355453996,
0.08552449809662101,
0.09602350765645433,
0.10100889835078493,
0.10063019684422726,
0.09540087785583024,
0.08617599167539378,
0.07413789404235223,
0.06076416968222287,
0.04773071063789302,
0.0366328485535041,
0.028345068860235273,
0.02228952300958372,
0.016926230602100165,
0.011780903870678037,
0.009163906300581838,
0.010310675034580509,
0.010984765533253548,
0.008857167152897518,
0.004854928835723085,
0.0033779922203868783,
0.004156140673483472,
0.003909275270900331,
0.00614658411953587,
0.009617790416992438,
0.014627163127783786,
0.023454384190825635,
0.036101012558445646,
0.05161717061825946,
0.06922775329617763,
0.0883084335988043,
0.10824773969131092,
0.12840486820959568,
0.14813651027515154,
0.1668496169803808,
0.18405420580389406,
0.19940547928405875,
0.21273263945796045,
0.22405442089566932,
0.2335809038014519,
0.24169949041222344,
0.24894163068120204,
0.2559276682025577,
0.2632915845058657,
0.27159541979798074,
0.28125137687703844
],
[
0.05380761206876106,
0.036236244167231604,
0.04028194040887882,
0.0572153911390246,
0.07474713781009998,
0.08877422830289695,
0.09794266463451162,
0.1018304344751681,
0.10053077706008243,
0.09453962495704957,
0.08472280938175461,
0.07230384130530748,
0.05883749217903854,
0.04609916485685109,
0.035703141530960984,
0.02822252454886501,
0.022449096608038083,
0.016404925069260258,
0.009515137680873066,
0.005547851863729698,
0.008851259264313054,
0.011092693646729273,
0.009756716178750987,
0.006131454416713688,
0.003928923618942141,
0.0038967565917175633,
0.003270886210219994,
0.0045315066876280025,
0.0063672533241912925,
0.010508484282407308,
0.01986943329913976,
0.033262953874207093,
0.049433837699648174,
0.06759992132686395,
0.08711131100292827,
0.10730669916802843,
0.12749983192900474,
0.14701981008656298,
0.1652643790544526,
0.18174872387052463,
0.1961442126290178,
0.20830634727812827,
0.21829200051282385,
0.22636461018528223,
0.2329835285021709,
0.23877151807833336,
0.2444545969338718,
0.2507737803904677,
0.25837979394199473,
0.2677351719147463
],
[
0.057274099866800425,
0.044603699082635055,
0.049698505597160963,
0.06450769455387034,
0.07999985089051198,
0.09238006932782122,
0.10018571084170283,
0.10291191856122563,
0.10060409397739331,
0.09373255295854337,
0.08315600077270899,
0.07011579118948788,
0.056228180782709844,
0.04339854596545567,
0.03340012723894153,
0.02672937368963547,
0.021673384394569593,
0.015797472938173976,
0.00831966639446057,
0.003566653716776218,
0.008742540551343068,
0.011872734023830349,
0.011183459167228954,
0.008049259087023346,
0.005136050421963239,
0.003619760158381325,
0.0028813037930124053,
0.003741124697263526,
0.0038846760369397604,
0.007155048529024206,
0.016936241077790043,
0.030611097696011988,
0.04704852996281195,
0.06553395411027241,
0.08536479489411712,
0.10578921523249878,
0.1260413181142555,
0.14539719213268212,
0.16322711606505547,
0.17903836128612036,
0.19250894405852792,
0.20351369436974873,
0.21214297598345874,
0.21871200176833364,
0.2237552005706027,
0.22799641614361896,
0.23228447664311364,
0.23748944999471058,
0.24437115235842033,
0.253453198090397
],
[
0.06042524392067358,
0.05152993300418375,
0.057564117249595655,
0.07108972896541732,
0.08500079920387023,
0.09594117714608917,
0.10247639113736051,
0.10407465474908402,
0.10075176721831099,
0.09295086312561059,
0.08150740912176509,
0.06765176800073504,
0.05302981936437205,
0.03969172934882145,
0.02975858758289174,
0.02399095356104092,
0.020238509997813073,
0.015544832537930158,
0.009415784635536436,
0.006582009751997344,
0.010508425458785345,
0.013326220061002345,
0.012786063085766224,
0.0098353747633942,
0.006331934805973127,
0.0035222983236031552,
0.0028206292778195,
0.0037520181457993715,
0.0033751249649831825,
0.005708219250258744,
0.014953031440633549,
0.028220740651156522,
0.04452941171658822,
0.06313274816510532,
0.08319623283689714,
0.10382785713207714,
0.12415300408795965,
0.14337678897252812,
0.16082955770260057,
0.17600093125061264,
0.18856724708094147,
0.1984152176081525,
0.2056623598700994,
0.21067167983517385,
0.2140535350618522,
0.21664179381001195,
0.21942727753185126,
0.22343628646652222,
0.2295641390868866,
0.2384091371543128
],
[
0.06261382955170246,
0.05673474432867841,
0.06374249885414232,
0.07659678609401988,
0.08938422458968052,
0.0991645057909875,
0.10460288698956155,
0.10518440304453074,
0.10091496899922699,
0.0922134076289096,
0.07987930433149597,
0.06510016887448146,
0.04949626281927618,
0.03521745744426997,
0.02491899588035829,
0.0202071958964861,
0.018482089785010175,
0.015911150907355787,
0.012220591402005418,
0.010947950899611265,
0.01330342040328842,
0.015066595816088421,
0.014156432724193847,
0.01110636796935698,
0.0073025018631801475,
0.003920958241348042,
0.002859556200181774,
0.0037747186848739313,
0.004369064262624402,
0.006327523380713884,
0.013773232477814432,
0.025980288286836267,
0.04187479266840843,
0.06048225298294043,
0.08073812081435873,
0.10156899357981708,
0.1219756819157316,
0.14108508805474917,
0.15818220292055216,
0.17273318194800374,
0.18440591094676748,
0.19309127432972664,
0.19892586306448357,
0.20231364209055522,
0.20393861094042764,
0.2047519043488621,
0.2059076124027644,
0.20862238712843237,
0.21396225023148932,
0.22261800906753576
],
[
0.06344887567735209,
0.06010665482485872,
0.06819478922531814,
0.08085070818011068,
0.09293101938760136,
0.10185344287087207,
0.10641472869236764,
0.10614701801026048,
0.10106482490900831,
0.09156994387701196,
0.0784208827387953,
0.06273674967603236,
0.046043341468638296,
0.030444349526064732,
0.019147348208999614,
0.015684905523508385,
0.01680179482665176,
0.016839219386416204,
0.015425977752779096,
0.014978582413125052,
0.01613813245819984,
0.016622939855966898,
0.014964984883354158,
0.011637381477991683,
0.007931820702022538,
0.004874749304604214,
0.0032049169061886674,
0.003477924735589642,
0.005260378537439096,
0.007336952727735906,
0.012797820192090102,
0.023646094192485416,
0.0390630207737078,
0.05768470631309231,
0.07814570351320627,
0.09917975419265518,
0.1196681013746741,
0.1386647558499076,
0.15541103155789088,
0.16934750645258395,
0.18012829629226132,
0.187640464427581,
0.1920297026529621,
0.19373066188775007,
0.1934943333611221,
0.19239314424490842,
0.19176740225405145,
0.19306754141365381,
0.1975786955327213,
0.20610842861732698
],
[
0.06271444855462832,
0.06162759918574547,
0.0709487678465965,
0.08379081365213395,
0.09552997407308836,
0.10389042466385986,
0.1078136217212896,
0.10689972330115131,
0.10118913354725066,
0.09107895891690841,
0.07729316713037518,
0.0608774491940624,
0.043219077767618616,
0.02617156981800267,
0.012971724685985231,
0.010996660299922665,
0.015629287926974107,
0.018029169381590125,
0.01822574285290892,
0.018168672172474514,
0.01840222692537974,
0.017626010479044333,
0.014982637895590123,
0.01123973232912475,
0.008020569443904259,
0.005962371020820931,
0.00407228983328592,
0.003145855072712958,
0.005535226498063657,
0.007610029090360614,
0.011343227831059116,
0.020991768348597166,
0.03614176515489867,
0.05490477677673442,
0.07561669926402916,
0.09685393958745049,
0.11740628490871355,
0.13627112207947342,
0.15265308845572437,
0.1659676421087366,
0.17585074255134447,
0.18217719857743292,
0.18508979228279251,
0.18503953393363115,
0.18283179026342133,
0.17965859904365794,
0.17706965012098927,
0.17680487391934693,
0.18043731480601902,
0.18892576040572395
],
[
0.060316200747085595,
0.061348491073969204,
0.07208907094505175,
0.0854384812756929,
0.09714934680545743,
0.10521940321819434,
0.10874189835385939,
0.10740051225866458,
0.10127798292115243,
0.0907836760348721,
0.07662638167057755,
0.05980331394939953,
0.041593220155001914,
0.023565746003689433,
0.007985976308403055,
0.007659149539374041,
0.015311939590103676,
0.019125830101044624,
0.020182535834019674,
0.020238527851952237,
0.01975874782292291,
0.017864164864140865,
0.014107673014616,
0.009763322226432388,
0.007387454519381456,
0.00684808395542419,
0.0052326159867467845,
0.0030652887627577044,
0.005056294481176033,
0.006792721660710459,
0.008968559640085933,
0.018023328811546106,
0.03334213804177404,
0.052414218265662234,
0.07340401351502104,
0.09481196303431712,
0.11537877536994927,
0.13406599374334233,
0.15005020202092095,
0.1627228913628509,
0.17169765058487596,
0.17682803005641032,
0.17823990812561136,
0.1763818597090788,
0.17209319376523682,
0.1666743116401975,
0.16190407799191545,
0.15988313187996345,
0.16257358564833543,
0.17113686642913029
],
[
0.05624942149912762,
0.05938225336655068,
0.07175435203428986,
0.0858774058214418,
0.09781610359128376,
0.10582996605998335,
0.1091706617407433,
0.10761756914034985,
0.10131077364916495,
0.0906909683877566,
0.07647933290423987,
0.059672301103158264,
0.041543709343833224,
0.023684146874240315,
0.008648629661445714,
0.008526546311883473,
0.01591935613853337,
0.019838294010681858,
0.021046292568288907,
0.02102252540605828,
0.020053581503505072,
0.017307657322533088,
0.012451392583725301,
0.00720992464022449,
0.006193553878507259,
0.007609720630766343,
0.006519437172233475,
0.0034134545395363026,
0.004020121021507341,
0.005106131353444725,
0.0057572647209620876,
0.01530067436531001,
0.031181185515183646,
0.05060844391747777,
0.07180909553606289,
0.09328961117161605,
0.11377561311874675,
0.13220782225222247,
0.14774035390617357,
0.15974055316475644,
0.16779493460284886,
0.17172634268772588,
0.17162827569236333,
0.16792377894249913,
0.1614561827767217,
0.15360797167002638,
0.1463959713152557,
0.1423702023251115,
0.14403579502598166,
0.15283782732035286
],
[
0.05058032577847514,
0.05590577709950144,
0.07013715869234416,
0.0852405981219434,
0.09759964789887118,
0.1057432217108137,
0.10908870232540499,
0.10752010336775117,
0.10124680565402146,
0.09075793828296885,
0.07681363461027327,
0.060456213160038026,
0.043053191525415056,
0.026479788358860584,
0.014168656324352725,
0.012681909363401423,
0.017197415670976577,
0.019977798319610364,
0.020684321297192554,
0.02045007312563299,
0.0192902762023321,
0.01615313310790574,
0.010555002491038272,
0.00429958561065412,
0.005723057712740731,
0.0088729062937527,
0.008322028612547263,
0.0051693321608962785,
0.004294774016586768,
0.004547533152533237,
0.004221947925339309,
0.01431767976835823,
0.030444045854964956,
0.04995746200742774,
0.07114492295525618,
0.09251260651420543,
0.11277034299798523,
0.13083816587656993,
0.1458467804906533,
0.157136612724684,
0.16426176195120173,
0.1670050819150956,
0.16541192764484638,
0.15985369380581868,
0.15113777636916811,
0.14068079385849858,
0.1307206901716669,
0.12435914280983364,
0.12488654098835474,
0.1341675491334239
],
[
0.04343519513956403,
0.051170264432123,
0.06748454826728985,
0.08369935037331637,
0.09659761077270869,
0.1049991186704571,
0.10849278661709008,
0.10707155173633762,
0.10102082939868973,
0.09088917022110013,
0.07749204863765251,
0.061939523901225306,
0.045709569925398125,
0.030856691388170744,
0.02048176854336795,
0.017503345119017667,
0.01875854485970372,
0.01946729105016188,
0.01905954020399617,
0.01855074468695647,
0.017658202518222407,
0.014915436400112716,
0.009774279583452124,
0.005157736580714471,
0.008153612224169769,
0.011504574228522099,
0.011337230962262369,
0.008904027880304692,
0.007909903616211548,
0.00809035506095003,
0.00865955511169059,
0.016716674247807997,
0.03186900155525366,
0.05086994329620143,
0.0716691439895796,
0.0926595790371506,
0.11249707663156844,
0.13006581023385377,
0.14446571261432334,
0.155005283109275,
0.16120089968644072,
0.1627874945633534,
0.15974824214517014,
0.15237664266531406,
0.14139634600651116,
0.12818297488435987,
0.11512838468847905,
0.10597980568314198,
0.10520499507023016,
0.11533378937874914
],
[
0.03499490914816745,
0.04552437229309425,
0.06409735786369561,
0.08145116819487312,
0.09492214850506414,
0.10364496263208785,
0.10737972202420079,
0.10622567902075132,
0.10054389942300047,
0.09094457453120863,
0.07830024850532703,
0.06377872238839565,
0.048906840512618156,
0.03566356167698516,
0.026340117730321282,
0.021983761045610853,
0.02027284509956591,
0.018352273797934717,
0.016231250201121768,
0.01549100427101188,
0.015640726600872956,
0.014509896135633568,
0.011731997612069034,
0.01047977168849123,
0.013184452499787986,
0.015867492190556467,
0.01590408526266739,
0.014277891072217861,
0.013647460344974709,
0.01416275762673637,
0.01562847349345112,
0.02223952395800768,
0.03565760168917927,
0.05352408087430098,
0.07350982926199277,
0.09382364546854423,
0.11302772847495159,
0.12995139820614077,
0.14365452261019493,
0.15340860713404564,
0.15868851757509486,
0.15917633886330973,
0.15478342606067835,
0.14570376434088547,
0.132528489039623,
0.11649135246129981,
0.09998701190434163,
0.08742426290333222,
0.08509120479474179,
0.09666719715626892
],
[
0.025496679110025375,
0.039460114895633565,
0.06032445814962526,
0.07870459509608178,
0.09268605549577032,
0.10172520415635425,
0.10574052369851945,
0.1049256934038049,
0.09970880471892202,
0.09075480367860768,
0.07898193757858747,
0.06558407154901404,
0.05205025175627399,
0.04010897334112875,
0.03129037670223514,
0.025725338659181446,
0.02152213077549452,
0.016815737650953816,
0.012379140302170025,
0.011714536097676545,
0.014219060664801225,
0.015950322576470548,
0.01629775198335403,
0.017234092771152797,
0.01968448654823801,
0.02174578035518148,
0.02188905330121484,
0.02089297726811352,
0.020638078145507097,
0.021493632242887906,
0.02359529170965767,
0.02958456157874443,
0.04138698691112475,
0.05778943725070241,
0.07662162067794182,
0.09598720755168941,
0.11435618032499553,
0.13049621036786688,
0.14342256079946578,
0.15236778177705354,
0.15676481040431653,
0.1562426799673283,
0.150638472302432,
0.14003565946733726,
0.12485589436615407,
0.10608274422382334,
0.08585593019726136,
0.06901085102636347,
0.06467700646712293,
0.07874220271241461
],
[
0.015266632432148052,
0.03369287457862286,
0.05654552322572424,
0.07565988915453827,
0.08998891689764633,
0.0992729199109985,
0.10355695077829298,
0.10310613491925817,
0.09839863290160268,
0.09013985328514099,
0.07927485842540635,
0.06698638675171602,
0.05465623533028305,
0.04370172953726403,
0.035083853813588355,
0.028511493087114786,
0.02236850541602387,
0.015181153101141624,
0.007917225938418872,
0.008514068224462613,
0.01478719280158481,
0.019545009347357964,
0.022404626155617693,
0.024692688395473516,
0.027080449358824053,
0.028750771755220145,
0.0289669163594165,
0.028407166054481833,
0.028443639488825286,
0.029560520730940263,
0.0320871556855235,
0.03781013051975149,
0.0483765186349937,
0.06329668974773213,
0.08079605159999795,
0.09902047661390932,
0.1163946456701104,
0.13163814526100776,
0.1437267559881712,
0.1518578946211369,
0.15542706610274823,
0.15401599421887485,
0.14739424436141396,
0.13553991949575434,
0.11869653894055171,
0.09752540087188251,
0.07359685446573466,
0.05137361317772889,
0.044165115213481584,
0.0626564933303401
],
[
0.005227701166390585,
0.02924246574132956,
0.053133705355001955,
0.07248635538340123,
0.08690448123708866,
0.09630367989733805,
0.1008005877353631,
0.10069704896592455,
0.09649683291625058,
0.08892693953475661,
0.0789393545978205,
0.06767558720348682,
0.056371539604068724,
0.04614256722359836,
0.03756420807336275,
0.03019808207314061,
0.022702953519799566,
0.013858271525753306,
0.004389032733024229,
0.008887752890114902,
0.01799955806687808,
0.024810329801991934,
0.02935609074928608,
0.032567912204641045,
0.03503100040085647,
0.036508618959336187,
0.03678528413453232,
0.03650100088517107,
0.0367211068818675,
0.037995200655684215,
0.04077030816503688,
0.046338881246769326,
0.05598907616045465,
0.06957449682959681,
0.08571435087948893,
0.10270299552254186,
0.1189831812614603,
0.1332559893179514,
0.14447304766970034,
0.1518072241022889,
0.1546266080456243,
0.1524775534952577,
0.14507845740040176,
0.13232583033082848,
0.11431777020790868,
0.09141673039475125,
0.06446683219923528,
0.03611255221831907,
0.024062053375980826,
0.05058441500244768
],
[
0.0078940932995423,
0.027276521012419223,
0.05039405337732441,
0.06929991484986196,
0.08347119676206692,
0.09281256248176768,
0.09743450410288529,
0.09762985434799738,
0.09389741633242338,
0.086965306810677,
0.07777693029277273,
0.06741601949167021,
0.056960793628967145,
0.047259781268703394,
0.038639135194240795,
0.030680573016744473,
0.02240861636180287,
0.013173671102897336,
0.0062936311791705335,
0.013336696679412535,
0.023175857638894157,
0.031107226198658296,
0.036755183192529475,
0.04065019798314408,
0.0432710427152949,
0.044688498780943886,
0.045010734348291975,
0.044869616382055146,
0.045158781848837704,
0.04647557521762575,
0.049345397381737946,
0.0547654418648157,
0.06371112870829991,
0.07615445529515888,
0.09101017952055548,
0.10675758266185664,
0.12190865523806131,
0.13518064309321814,
0.14552327509415813,
0.1521012812418713,
0.15427034150056268,
0.15155868516392507,
0.1436577827856315,
0.1304223645263513,
0.1118787278957958,
0.08824032783432093,
0.05993321938885574,
0.027679311620141256,
0.009059576790503412,
0.04598024206070612
],
[
0.018390399463946716,
0.02836585768262641,
0.04849155340057065,
0.06614708968558411,
0.07968802790451615,
0.08877486930099807,
0.09341734597682928,
0.09384434972680152,
0.09051447187631288,
0.08413727694069954,
0.07564010574829785,
0.0660481578116411,
0.05628866058644163,
0.04697779993661357,
0.03827535482583967,
0.02988896076064661,
0.021356506993925318,
0.01317093928060466,
0.011178833743080926,
0.019312435780067822,
0.029358741585295445,
0.03792902198985001,
0.04432545021461194,
0.04875210077082489,
0.05156936882538727,
0.05299932251946121,
0.05333945396679317,
0.053225940494552905,
0.053467059322266954,
0.054706947641246256,
0.057533248331970405,
0.06276600268761277,
0.07113598773448161,
0.08261880020623746,
0.09631779801974277,
0.11088429138128089,
0.12492721844313957,
0.1372102909343345,
0.14670589799230205,
0.152590732838114,
0.15422665300402524,
0.15114450902075316,
0.1430375377242107,
0.12976688968805944,
0.11138286444615102,
0.08817803480009097,
0.06086594906812366,
0.03177308231316368,
0.021152342255926455,
0.050806778741286265
],
[
0.028770410726840164,
0.031892453658619174,
0.047405906297201324,
0.06300179023435738,
0.07551695217077906,
0.08415062394674924,
0.0887095372506875,
0.08929644239341324,
0.08629074889869685,
0.0803660414355038,
0.07243626016559553,
0.06348392467033095,
0.054304612957117575,
0.045303512268356216,
0.0365045003979651,
0.027798737143043362,
0.019436326159008668,
0.013648781713344426,
0.016271889099928653,
0.02554561494828229,
0.03587647313755549,
0.04489726560926467,
0.05184070196684817,
0.05669694549939655,
0.059717639652787195,
0.06118578531717817,
0.06150057364289012,
0.06130635352950219,
0.06138021930934213,
0.0624203045850198,
0.06507515719921568,
0.07006390077331699,
0.07793423516927872,
0.08861113235523689,
0.10129954401208749,
0.11478673171154787,
0.12778506362357275,
0.13912620275765528,
0.1478283570095659,
0.15310165241324175,
0.1543345297412849,
0.15108249799543536,
0.14306949769371366,
0.1302095668174932,
0.11266538400347707,
0.09100414722587627,
0.06672431284290725,
0.04464185406321301,
0.040434759885915855,
0.06263488113824091
],
[
0.03851454270890953,
0.036676690121899225,
0.046947936880175394,
0.05977781981767238,
0.07089208280324268,
0.07889236004584979,
0.08328116142297212,
0.08396640014000906,
0.08120557482959227,
0.07562136360585128,
0.06812812365389571,
0.05969961020849405,
0.0510310293322555,
0.04232165963561027,
0.0334365273068738,
0.024452519708121685,
0.01661420014798219,
0.0144296115644935,
0.02107038168030807,
0.03155047609394866,
0.04230417096004379,
0.05172266254935346,
0.05910425375692619,
0.06431913114445459,
0.06752901195584017,
0.06902679815514035,
0.06925821393678294,
0.06887611718157859,
0.06866047438217517,
0.06937445389147288,
0.07173585607324554,
0.07641709888534766,
0.08383262828176952,
0.09383226392512656,
0.10565750912233929,
0.11818893684617467,
0.13023461538080278,
0.1407066927624655,
0.14868907486804897,
0.15344640056926698,
0.15441430913803877,
0.15119422208232522,
0.14356614032826948,
0.13153278063709747,
0.1154250133212234,
0.09616233376868469,
0.0759818690164311,
0.06043637950980447,
0.059839052157064504,
0.077966598803469
],
[
0.04738716042119717,
0.041756062259881044,
0.04683324942833633,
0.056354607109339004,
0.06573381592266665,
0.07295524125019298,
0.07712113441571235,
0.07786772551275649,
0.07528281267164447,
0.0699247273800109,
0.06273318436813159,
0.054728293065682124,
0.046553501703363795,
0.038195053864168445,
0.029281074728313816,
0.019991452311861998,
0.013025605827423061,
0.015541869686548651,
0.025473740108896248,
0.03710674103806153,
0.04836971772772974,
0.05818205856792682,
0.06594546889540467,
0.07146838724057004,
0.07484017286773208,
0.0763356337970996,
0.07641338260500057,
0.07573403370336781,
0.07510222601029298,
0.0753590546155846,
0.07730672193180695,
0.0816140516916671,
0.08860173541227645,
0.09803279487548994,
0.10913631134151502,
0.12084444167196529,
0.1320455677431429,
0.14173801222139845,
0.14908776597939458,
0.15343376571306724,
0.15427852866251324,
0.15128828301385544,
0.14431819556862813,
0.133479578066315,
0.11928486499295868,
0.10296178716073442,
0.0871326528340798,
0.07686478228487113,
0.07875802369512727,
0.09470419382506029
],
[
0.05523195064859691,
0.04653643571389239,
0.04677212802667606,
0.0526099766176131,
0.05996549923949559,
0.06630840863149619,
0.07024756839952112,
0.07105720544458537,
0.06860005664108991,
0.06335587899237688,
0.05632415827674888,
0.048652847182423735,
0.04101276377941547,
0.03316922898696672,
0.024384383899795775,
0.01471467896257665,
0.009217358402515483,
0.01717187435596036,
0.029493962246367567,
0.04210727451196292,
0.05389592597803368,
0.06410530385814917,
0.07222121187918236,
0.07801502042416715,
0.0815145893663793,
0.0829611398055192,
0.08280600330385893,
0.08171649941139217,
0.08053617297131127,
0.08019788119093911,
0.08160878956674239,
0.08547285371090722,
0.09204923606733009,
0.10100660628413177,
0.11152195125246941,
0.12254020810100148,
0.1330115368218814,
0.14202201131915307,
0.14883347891201848,
0.15287755531769842,
0.15374177866189367,
0.15117274233626538,
0.14511228748336014,
0.13578327898008355,
0.12385556835065858,
0.1107495251876099,
0.09911351979650185,
0.09310702592396827,
0.096993821299893,
0.11180834220905612
],
[
0.06194635613658921,
0.050689222364519906,
0.04653769283336697,
0.04845395093778325,
0.05353020133027674,
0.05894674185505829,
0.06271996109898406,
0.06364749799664104,
0.06130105748456624,
0.0560636104353199,
0.04903331883338765,
0.041600676708247075,
0.034599839225180104,
0.027588105046954463,
0.019308628911692344,
0.00930029418910231,
0.006992057555081549,
0.019457159551140447,
0.03315917117553137,
0.046493056927053716,
0.05876456448295207,
0.06936576626992434,
0.07781785448672648,
0.08385488163942674,
0.08744609814081475,
0.08878965437604452,
0.08831723166776824,
0.08670132946893033,
0.08483345738020663,
0.08375235871560757,
0.08449566719202466,
0.08784170991713598,
0.09401646950743567,
0.10258616726269856,
0.11263949159783082,
0.12309765538305259,
0.1329535462706879,
0.14138102269287878,
0.14775038200031987,
0.15160337586735986,
0.1526290258046673,
0.15066601778210212,
0.14574642754956643,
0.13819240680869666,
0.12878179175386423,
0.11899380560234082,
0.11125827392939007,
0.1088072132753066,
0.11443856289013062,
0.12874737782725498
],
[
0.0674710316137278,
0.05405253968702622,
0.04600084613473478,
0.04386103172252109,
0.04640610203539701,
0.05090310047519112,
0.054655520042020726,
0.0558252075708943,
0.053614881342163453,
0.048285846307080375,
0.04106602030199643,
0.03374210315159107,
0.027561576077028162,
0.021944581772957595,
0.015011340029039005,
0.006050034415409199,
0.00890376301970512,
0.022302873435513317,
0.03645124033916177,
0.05021408075945258,
0.06289245712117002,
0.07387300599855655,
0.08265294255298845,
0.08891374403963498,
0.09256253207067906,
0.09374745222772841,
0.09287220215404846,
0.09061177921001734,
0.08791026719639386,
0.08592573110645613,
0.08585667907650878,
0.08860000841879061,
0.09437676541007316,
0.10263946899499549,
0.11235080788617169,
0.12237232363658496,
0.13172148234561049,
0.13966063995535957,
0.14568163708290882,
0.14945374183237256,
0.1507823780065823,
0.14960594644189182,
0.14604244447693274,
0.14048860038417138,
0.1337679019007834,
0.12729889776990505,
0.12316321457033108,
0.12378675347332165,
0.13102590284743557,
0.14522923434160281
],
[
0.07178062059830982,
0.05656914640750183,
0.04513841846749852,
0.03890336883946852,
0.03862071691562405,
0.042263246987001124,
0.04625591766581422,
0.04788046199283432,
0.0458878865795979,
0.04038914179026998,
0.03273722691975254,
0.025296985707034883,
0.02024264368729729,
0.017023351079930225,
0.012979812600966732,
0.008586141717660107,
0.013246238858635686,
0.02536875693835884,
0.03927425778985446,
0.05320772550168238,
0.0662175546485865,
0.0775684504607054,
0.08667707778336516,
0.09315133275739575,
0.09682937005054357,
0.09780365559814996,
0.09644333709334857,
0.09342118217700923,
0.08973347018967527,
0.08666850701392519,
0.08562077753140342,
0.08765982667568856,
0.09303473689923071,
0.10106818800280755,
0.11055288721885888,
0.12025307748054204,
0.12919438029715513,
0.1367310410851355,
0.14249183174481828,
0.1462918892824049,
0.14806662153037908,
0.1478572812332822,
0.14585552095764615,
0.14249797554546684,
0.13858763145106615,
0.1353896061930563,
0.13458848149837052,
0.1379530313670955,
0.14671817497477124,
0.16108598623114684
],
[
0.07487364101990944,
0.05824618076694922,
0.044022741947917984,
0.03379247422834948,
0.03026778091137879,
0.03319218590692818,
0.03786071465182453,
0.04025839037396745,
0.038636083992074965,
0.032946024892508835,
0.024574784588765445,
0.016568879083773146,
0.013284571170125012,
0.014111686256131628,
0.014119222337655968,
0.01349750072278514,
0.01776601866071024,
0.028187083298171507,
0.04146008272174015,
0.05539549965400407,
0.06869541783054645,
0.08042535991289838,
0.08987693477176296,
0.0965654472186084,
0.10025350595478374,
0.10097357031286608,
0.09905429817150511,
0.09515858284584576,
0.09032800450872727,
0.08598621535945795,
0.08376214184024139,
0.08496804408885222,
0.08992609535032693,
0.09780675091601894,
0.10717684000550073,
0.11666136018839894,
0.1252801273540634,
0.13248737999010474,
0.13806844100889587,
0.14200478637688504,
0.1443740924209187,
0.1453182492210254,
0.14508162568440464,
0.1440977057583857,
0.14308454709587126,
0.14308919641383716,
0.14539954535016802,
0.1512649796305121,
0.16150136785567706,
0.17622192604331824
],
[
0.07676142580597146,
0.059124476530074334,
0.042795580195396206,
0.028939350424675995,
0.021544577264481328,
0.024007773760870734,
0.030066241803406394,
0.033638796529003735,
0.032607869120863615,
0.026857623857730228,
0.01762988787176415,
0.008178020446889086,
0.008598836628591237,
0.014409783366644027,
0.01728788558910222,
0.018160024506379283,
0.021519832554426428,
0.03028738801793924,
0.0428040967904784,
0.056697568782117604,
0.0703062303769665,
0.08245384121256409,
0.0922800818339206,
0.09919651324017684,
0.10288717058429657,
0.10332232135634199,
0.100784516954242,
0.09591560963228714,
0.08978687987085522,
0.08395111145265624,
0.08030914147443642,
0.08050963057251585,
0.08501776248659514,
0.09282212427636696,
0.10218774576867636,
0.11155082321237958,
0.11991496815157898,
0.1268496279278912,
0.1323227430897417,
0.13650590599509146,
0.1396296180998381,
0.14192700917508458,
0.1436638310759589,
0.1452196969541598,
0.14716840913637905,
0.1502998460274577,
0.15553383871504992,
0.16371781929478815,
0.17538230665080334,
0.19058817752194931
],
[
0.07745694761212672,
0.0592521186282462,
0.041625705976733034,
0.025019145403034584,
0.012921736629517592,
0.01548732328045201,
0.023960697830150247,
0.028980937333056424,
0.028744169279744918,
0.02335062832989916,
0.014079035834930571,
0.00458650547250794,
0.009931916168561343,
0.017304515091618577,
0.020923465602365573,
0.021852933800140837,
0.024022906918391738,
0.031270447750458556,
0.04311546309581683,
0.057061544611571265,
0.07107122768024793,
0.08371072003294469,
0.09396167117697103,
0.10113254617017023,
0.10483179494303048,
0.10496841768659808,
0.10177391719465503,
0.09585446945313811,
0.08828459793707295,
0.08072039756207723,
0.07535995380324187,
0.07431347037432814,
0.0783081912460195,
0.08611436313160399,
0.09558561990570473,
0.1049076627749807,
0.11306310102152504,
0.11976213112333334,
0.1251905786493761,
0.12973844094372752,
0.1337964777228615,
0.13766898671311148,
0.14159843516668874,
0.14585273607659568,
0.15081021801393782,
0.1569874607553799,
0.16498119938206446,
0.17533504523294532,
0.18838648144072706,
0.20416900442315272
],
[
0.07696491682106227,
0.05866188878820987,
0.04065312496526397,
0.022901466172830932,
0.006620951670612845,
0.010353457381632923,
0.021210513902143676,
0.027238223658799462,
0.027742091605414635,
0.023236205617397702,
0.01569934668972299,
0.01079040406045863,
0.015097182417227342,
0.021154491132521838,
0.024157769166305573,
0.024282494463714166,
0.024980362933578977,
0.030841066205054397,
0.04227059463316991,
0.056501447722047404,
0.07107635585681554,
0.08431299147598588,
0.0950522317781285,
0.10251392540715008,
0.1062411520470486,
0.10608641206105275,
0.10222681315676235,
0.09521607874604264,
0.08609411541326323,
0.07656461227531626,
0.06911162037458572,
0.06646409646391853,
0.06982793856857501,
0.07771833269254466,
0.08740826869453855,
0.09675224965601183,
0.10471668261073347,
0.11119307526151535,
0.1166333688277882,
0.12167991456488093,
0.12688470377305827,
0.132586203833325,
0.1389415552092873,
0.14604380507532794,
0.15403702041657516,
0.1631701126479542,
0.1737715809795381,
0.18616331835321817,
0.20055598346706915,
0.21697357478236892
],
[
0.07527477478432587,
0.057355372941732444,
0.03993538386721325,
0.023161059602796037,
0.00980914095090466,
0.013190460259221073,
0.022761939993598688,
0.028544995653297926,
0.02935139191439441,
0.02580886340294311,
0.020299371853803923,
0.017586498442872935,
0.02054980430009613,
0.02485544272393621,
0.02658682090256078,
0.025330228594811308,
0.024223686082722847,
0.028824966779471734,
0.040271045228018124,
0.05514470966408779,
0.07050004364388847,
0.0844522667514035,
0.09574473518013309,
0.10353658152869451,
0.10732244913993946,
0.10690710340128065,
0.10241292217038835,
0.09432558865419405,
0.08360505746735415,
0.07190983537542925,
0.06191674084039088,
0.05712865311565402,
0.05964080419550242,
0.067707974200209,
0.07773805147592218,
0.08714339407109857,
0.09489679836951759,
0.10113401387742733,
0.10663997053830658,
0.11234978206727807,
0.11896375296132312,
0.1267898525693626,
0.1358164161109615,
0.14589853574921524,
0.1569264989786135,
0.16890878308628507,
0.18196644992616928,
0.19626848516326217,
0.21194733132240284,
0.22903038794178135
],
[
0.07235795682376195,
0.055297526839133505,
0.03942281051110297,
0.0254921162840768,
0.017471046204869542,
0.02037657603728613,
0.027337983682723208,
0.0319310228151853,
0.032472339736354196,
0.029471467022553138,
0.025200783177073614,
0.02326261195265599,
0.025151442964981452,
0.02783752256361883,
0.02804543957027427,
0.025020849295397083,
0.021698381686268614,
0.02519502126078943,
0.03732190347197777,
0.05328639783414641,
0.06963991861393477,
0.08440575624076938,
0.09629777296995959,
0.10445123649856325,
0.10833324396319238,
0.10771285219283172,
0.10266204212737333,
0.09358968218348726,
0.08133488840896845,
0.06739119685191451,
0.05439533272301296,
0.04662851170969072,
0.047846798453166715,
0.056207561847558284,
0.06671815995188107,
0.07618869238036263,
0.08365669470190398,
0.08959963145362,
0.09523044182364916,
0.10182312053479993,
0.11018285788100882,
0.12047732201811036,
0.132420773853706,
0.14558006061758502,
0.15960080142933666,
0.17429919152948833,
0.18965190482993294,
0.2057319252521058,
0.22262909427837635,
0.24038304110914338
],
[
0.06817005574207453,
0.05242434076974251,
0.03898220635251029,
0.028994361922755608,
0.025223657227896,
0.028107361548176484,
0.03306245510556332,
0.036154460878210656,
0.035960134891492426,
0.032945982512241075,
0.02915589687234077,
0.027388696950143725,
0.028450430182842185,
0.029810671316457225,
0.028530431595219168,
0.023556858097939226,
0.017489184967159094,
0.02016036042600443,
0.033960986924117684,
0.051443308840489296,
0.06892804712793581,
0.08453664790884959,
0.09703028400386039,
0.10555549635051117,
0.10957144895306062,
0.1088249626941304,
0.10334785601557914,
0.09347687802592215,
0.07991419774961349,
0.06388963017984986,
0.0476348047822435,
0.0356632318639434,
0.034592913437564994,
0.043426838081756895,
0.05459588343179578,
0.06407080950753069,
0.07109081046480246,
0.07662800687143886,
0.08246422565624398,
0.09025711479350122,
0.10080447569897821,
0.11395410641998621,
0.1290325391857464,
0.14530481314726776,
0.162218821914962,
0.17946377110210848,
0.19693243812570776,
0.2146468565042709,
0.2326792843883507,
0.2510866831830628
],
[
0.06265752676237342,
0.04866435180685469,
0.03846312079858105,
0.03286281502236894,
0.03236918831456513,
0.03536721576561846,
0.03880650859320009,
0.04033155478770439,
0.039034004374289534,
0.03548166575530337,
0.031589001107326306,
0.029703091706341528,
0.0302083459154688,
0.030658904166879643,
0.028198784624394905,
0.021427395468257147,
0.011988341312383011,
0.014556936145973459,
0.031247944061052885,
0.05037355047163693,
0.06891535707041728,
0.0852743224166481,
0.09830271094918291,
0.10717560483311507,
0.11135597063343511,
0.11058062861463999,
0.10485710907470848,
0.09447215344217125,
0.08001877670228366,
0.06246693606347494,
0.04339491805780405,
0.026101603598072457,
0.020135597289817023,
0.0298048587588353,
0.04185664310401454,
0.05112194188910962,
0.05736093754856733,
0.06228198087436108,
0.06845986790994978,
0.0779460555324585,
0.09125873838974224,
0.10765807716603579,
0.12600949994063146,
0.14533329902558584,
0.16496618467988516,
0.18454318238462014,
0.20392477946993878,
0.22311445037185454,
0.24218253415808286,
0.2612048330856352
],
[
0.055767769711596,
0.043975427844808,
0.0377838293259952,
0.036638006425323846,
0.03874459978267247,
0.04186899788666417,
0.044054704068997266,
0.0439843689358366,
0.04127085027384779,
0.036688431317612624,
0.03219537988012708,
0.030027196321373965,
0.03031556653928703,
0.03042619061316689,
0.02741162584179877,
0.019621284808519757,
0.007217304802930661,
0.011506135999501399,
0.03079834277821826,
0.05098029987585906,
0.07020128894204575,
0.08706656530028196,
0.10048162378387193,
0.10963665598618573,
0.11399762952387961,
0.11329972059483662,
0.10754503357130621,
0.09700624639716551,
0.08223693161760195,
0.06408883975873014,
0.04374127008885555,
0.022812685639243678,
0.0060106243452019694,
0.016919095984584617,
0.02972381735754311,
0.03807030971683743,
0.042784413959417296,
0.046653695194226116,
0.05345092981165959,
0.06544320302486528,
0.08222539766550548,
0.10217587022097059,
0.12377645196682499,
0.1459538798305693,
0.1680425306979313,
0.18968712135105822,
0.21075160619688244,
0.2312397495930121,
0.25122711533733344,
0.27080641443725006
],
[
0.04746121590009293,
0.03840682177365882,
0.037018989454789375,
0.04017111283812003,
0.04437194365967797,
0.04757676732867461,
0.04863897580402945,
0.0469410605802368,
0.04253147412633661,
0.03643045437038935,
0.03082497565493404,
0.028255034879824215,
0.028801044229477674,
0.029363797682709407,
0.026804710826658834,
0.019726010855431443,
0.01028154580885955,
0.015930369237983973,
0.03404856746072155,
0.05403531918934268,
0.0733054650518633,
0.09030720026890912,
0.10389138815290659,
0.11322466713696025,
0.11776418035125158,
0.11724675134810604,
0.11168623506218242,
0.10137884826729439,
0.08691754110165267,
0.06921870791940539,
0.04957783002758411,
0.029864173703977245,
0.013949549307319327,
0.013674241644954703,
0.02202381600779338,
0.026974800954109982,
0.028223809238128676,
0.029883811348484786,
0.037987525535405776,
0.053835896731629286,
0.07472623755256345,
0.09822672361928901,
0.1227919470642351,
0.14745874071985055,
0.1716463942981623,
0.19504457074931705,
0.21753516411309676,
0.2391274830382337,
0.2599018891390233,
0.2799629577629473
],
[
0.037724941056904444,
0.03222545900121031,
0.03647774906681661,
0.043554308591692355,
0.04940559036825193,
0.05260832880792857,
0.05261426023700235,
0.04926958651542291,
0.042931506457917705,
0.03481692542983989,
0.027468118110582897,
0.024362669721254376,
0.025916677270293988,
0.028041204306031846,
0.02729957141081169,
0.023090713599716,
0.019423705774442083,
0.02561795412747434,
0.04113918067657322,
0.059863440874574604,
0.07853222313870017,
0.09526187784478331,
0.10876561422175134,
0.11814958580052003,
0.1228478267106146,
0.12259819971387756,
0.11743719115927863,
0.10770933960947697,
0.09409368325438135,
0.07765728512294577,
0.059965218608159496,
0.0433176183556569,
0.031056795431849277,
0.026060543666418846,
0.025541712154425984,
0.02352150483367894,
0.017426255412560043,
0.012343907563333064,
0.023933381745259753,
0.04525763346874177,
0.07012293148974325,
0.09657624118047926,
0.12349114049093196,
0.1501137951158561,
0.17595888156725692,
0.2007540272287352,
0.22439103926005086,
0.2468779490378056,
0.26829330678724134,
0.28874598054573547
],
[
0.02659208045545588,
0.02622659049803315,
0.03673926972719005,
0.04706303772798449,
0.05411321249018898,
0.05720489329410387,
0.0562050429246813,
0.05124664542279413,
0.042855011400615255,
0.032287162623337626,
0.02232850393614879,
0.01845512399316589,
0.022382143406205916,
0.027479026194343177,
0.02986018411498631,
0.029673327750225405,
0.030543885416292632,
0.037534946194120435,
0.05118046279219963,
0.06828501232795103,
0.0859119929586088,
0.10202554682530009,
0.11521589956953877,
0.12452089625893184,
0.1293450968850851,
0.12942575181686297,
0.12482450656301437,
0.11593859641239126,
0.10353171084826933,
0.0887866283149417,
0.07336993777859245,
0.059417200820452445,
0.0490435800569516,
0.04277874163122146,
0.03825898469006791,
0.03188262532544477,
0.02130502773738358,
0.00814082190665824,
0.0190250039063752,
0.04297642734137357,
0.0697852709551344,
0.09786312825668632,
0.12621378718868193,
0.15412770920683574,
0.18112823211316625,
0.2069345293594519,
0.23142245298013137,
0.25458318778397565,
0.2764825977118714,
0.2972245898331842
],
[
0.014213602982455312,
0.022406590663619226,
0.03856114386782098,
0.05109060269258463,
0.05885047248632467,
0.06170628383675275,
0.059768738797476,
0.05333001172626915,
0.04297474640755113,
0.02980563894482279,
0.016187575098456444,
0.0110569872278026,
0.019938711296116567,
0.029039995000548956,
0.03502003442557876,
0.03865753748349534,
0.04279534432166147,
0.05067664984644327,
0.06322255852495025,
0.07883646033739891,
0.09525094915041944,
0.11053023345085114,
0.12322920141538388,
0.13234355274748158,
0.1372549698723391,
0.13770008160721814,
0.13376117186117004,
0.12587481112429416,
0.11485384139406356,
0.10190891436123599,
0.08862091229563268,
0.07672576971659312,
0.06748138024270875,
0.06071174472320846,
0.05457290967542358,
0.046790513771806395,
0.03647620456407287,
0.026947751856292612,
0.030096064887897202,
0.04888492400109644,
0.07439512224520942,
0.10240337340721993,
0.13114194171003668,
0.1596275965685054,
0.18725773364617343,
0.2136784195852434,
0.23871550166173358,
0.26232367900012227,
0.2845432869030426,
0.3054633686502861
],
[
0.003396568914078465,
0.023875110992679565,
0.04260353481519382,
0.056059713603285176,
0.0640176276679785,
0.06651280253922287,
0.06374724835079712,
0.0560990613595225,
0.044198787863677466,
0.029036694530055335,
0.0121587269408885,
0.006588195136158232,
0.021447788504756024,
0.03374250547267296,
0.04271368706195584,
0.04936822877207758,
0.05589817661011065,
0.0646443839844587,
0.07659908865559019,
0.09100948784329842,
0.10623622556815794,
0.12059150216949516,
0.13269117955510645,
0.1415332914864371,
0.14649373968187826,
0.14731122504044902,
0.14408042037512722,
0.13725479133883733,
0.12765057030624827,
0.11642646430696377,
0.10497874411400555,
0.09464788024583146,
0.08618032754987218,
0.07920704604473047,
0.07235470447516773,
0.0642126746860019,
0.0547172015951596,
0.046882407719665356,
0.04768419595462411,
0.0612191220306067,
0.08355822327112798,
0.11010605105804291,
0.13827505257439549,
0.16664805958016793,
0.194399039728505,
0.22104663574059913,
0.246335717733085,
0.27016577879526793,
0.2925391704049842,
0.31352060958427674
]
]
},
{
"hoverinfo": "text",
"legendgroup": "In-sample",
"marker": {
"color": "black",
"opacity": 0.5,
"symbol": 1
},
"mode": "markers",
"name": "In-sample",
"text": [
"Arm 0_0
mean_accuracy: 0.944 (SEM: None)
lr: 0.00178153
momentum: 0.299596",
"Arm 1_0
mean_accuracy: 0.657667 (SEM: None)
lr: 3.13041e-06
momentum: 0.79942",
"Arm 2_0
mean_accuracy: 0.1 (SEM: None)
lr: 0.28965
momentum: 0.552932",
"Arm 3_0
mean_accuracy: 0.0941667 (SEM: None)
lr: 0.0175208
momentum: 0.952178",
"Arm 4_0
mean_accuracy: 0.095 (SEM: None)
lr: 0.0047825
momentum: 0.90416",
"Arm 5_0
mean_accuracy: 0.8765 (SEM: None)
lr: 6.55243e-05
momentum: 0.134687",
"Arm 6_0
mean_accuracy: 0.1115 (SEM: None)
lr: 0.00564128
momentum: 0",
"Arm 7_0
mean_accuracy: 0.8655 (SEM: None)
lr: 4.48039e-05
momentum: 0.395533",
"Arm 8_0
mean_accuracy: 0.9535 (SEM: None)
lr: 0.000827158
momentum: 0.188415",
"Arm 9_0
mean_accuracy: 0.916833 (SEM: None)
lr: 0.000143528
momentum: 0.28433",
"Arm 10_0
mean_accuracy: 0.187167 (SEM: None)
lr: 1.51089e-06
momentum: 0.208311",
"Arm 11_0
mean_accuracy: 0.121 (SEM: None)
lr: 1e-06
momentum: 0.537914",
"Arm 12_0
mean_accuracy: 0.950167 (SEM: None)
lr: 0.000497114
momentum: 0.242502",
"Arm 13_0
mean_accuracy: 0.939167 (SEM: None)
lr: 0.000452149
momentum: 0.435189",
"Arm 14_0
mean_accuracy: 0.903833 (SEM: None)
lr: 5.87362e-05
momentum: 0.686592",
"Arm 15_0
mean_accuracy: 0.835833 (SEM: None)
lr: 1.65726e-05
momentum: 1",
"Arm 16_0
mean_accuracy: 0.961 (SEM: None)
lr: 0.00079176
momentum: 0.321032",
"Arm 17_0
mean_accuracy: 0.889667 (SEM: None)
lr: 0.000121922
momentum: 0.531125",
"Arm 18_0
mean_accuracy: 0.9065 (SEM: None)
lr: 0.000191334
momentum: 0",
"Arm 19_0
mean_accuracy: 0.871 (SEM: None)
lr: 1.91804e-05
momentum: 0.76939",
"Arm 20_0
mean_accuracy: 0.9645 (SEM: None)
lr: 0.00138748
momentum: 0.419484",
"Arm 21_0
mean_accuracy: 0.922833 (SEM: None)
lr: 0.000284891
momentum: 0.128531",
"Arm 22_0
mean_accuracy: 0.961 (SEM: None)
lr: 0.000990392
momentum: 0.274323",
"Arm 23_0
mean_accuracy: 0.963333 (SEM: None)
lr: 0.0011598
momentum: 0.363949",
"Arm 24_0
mean_accuracy: 0.817 (SEM: None)
lr: 1e-06
momentum: 1",
"Arm 25_0
mean_accuracy: 0.9515 (SEM: None)
lr: 7.47008e-05
momentum: 0.900507",
"Arm 26_0
mean_accuracy: 0.958 (SEM: None)
lr: 0.0025543
momentum: 0.424799"
],
"type": "scatter",
"x": [
0.0017815258204423746,
3.130406215216603e-06,
0.28964990262194684,
0.017520843007271327,
0.004782501952270534,
6.552433729538144e-05,
0.005641284485486079,
4.4803925542715586e-05,
0.000827157915375537,
0.00014352847004093182,
1.51089048717613e-06,
1e-06,
0.0004971142441610986,
0.0004521490674253128,
5.873622132620575e-05,
1.657261161054976e-05,
0.0007917604932272899,
0.00012192163097013598,
0.00019133435635910388,
1.9180411079107894e-05,
0.0013874759589031765,
0.0002848905264214655,
0.000990391946370923,
0.0011598016322801991,
1e-06,
7.470075078289901e-05,
0.0025543035506047497
],
"xaxis": "x",
"y": [
0.29959636926651,
0.7994204359129071,
0.5529317548498511,
0.9521782910451293,
0.9041602844372392,
0.13468657876120926,
0.0,
0.3955330132772445,
0.1884152833914496,
0.2843295714127677,
0.20831138100149377,
0.5379141507369006,
0.242501838622634,
0.4351890803107001,
0.6865920248676607,
1.0,
0.32103209393143367,
0.5311248033857279,
0.0,
0.7693899609371041,
0.4194844231488044,
0.12853067842465013,
0.27432326986554534,
0.3639493065178049,
1.0,
0.9005074161995618,
0.4247987515659271
],
"yaxis": "y"
},
{
"hoverinfo": "text",
"legendgroup": "In-sample",
"marker": {
"color": "black",
"opacity": 0.5,
"symbol": 1
},
"mode": "markers",
"name": "In-sample",
"showlegend": false,
"text": [
"Arm 0_0
mean_accuracy: 0.944 (SEM: None)
lr: 0.00178153
momentum: 0.299596",
"Arm 1_0
mean_accuracy: 0.657667 (SEM: None)
lr: 3.13041e-06
momentum: 0.79942",
"Arm 2_0
mean_accuracy: 0.1 (SEM: None)
lr: 0.28965
momentum: 0.552932",
"Arm 3_0
mean_accuracy: 0.0941667 (SEM: None)
lr: 0.0175208
momentum: 0.952178",
"Arm 4_0
mean_accuracy: 0.095 (SEM: None)
lr: 0.0047825
momentum: 0.90416",
"Arm 5_0
mean_accuracy: 0.8765 (SEM: None)
lr: 6.55243e-05
momentum: 0.134687",
"Arm 6_0
mean_accuracy: 0.1115 (SEM: None)
lr: 0.00564128
momentum: 0",
"Arm 7_0
mean_accuracy: 0.8655 (SEM: None)
lr: 4.48039e-05
momentum: 0.395533",
"Arm 8_0
mean_accuracy: 0.9535 (SEM: None)
lr: 0.000827158
momentum: 0.188415",
"Arm 9_0
mean_accuracy: 0.916833 (SEM: None)
lr: 0.000143528
momentum: 0.28433",
"Arm 10_0
mean_accuracy: 0.187167 (SEM: None)
lr: 1.51089e-06
momentum: 0.208311",
"Arm 11_0
mean_accuracy: 0.121 (SEM: None)
lr: 1e-06
momentum: 0.537914",
"Arm 12_0
mean_accuracy: 0.950167 (SEM: None)
lr: 0.000497114
momentum: 0.242502",
"Arm 13_0
mean_accuracy: 0.939167 (SEM: None)
lr: 0.000452149
momentum: 0.435189",
"Arm 14_0
mean_accuracy: 0.903833 (SEM: None)
lr: 5.87362e-05
momentum: 0.686592",
"Arm 15_0
mean_accuracy: 0.835833 (SEM: None)
lr: 1.65726e-05
momentum: 1",
"Arm 16_0
mean_accuracy: 0.961 (SEM: None)
lr: 0.00079176
momentum: 0.321032",
"Arm 17_0
mean_accuracy: 0.889667 (SEM: None)
lr: 0.000121922
momentum: 0.531125",
"Arm 18_0
mean_accuracy: 0.9065 (SEM: None)
lr: 0.000191334
momentum: 0",
"Arm 19_0
mean_accuracy: 0.871 (SEM: None)
lr: 1.91804e-05
momentum: 0.76939",
"Arm 20_0
mean_accuracy: 0.9645 (SEM: None)
lr: 0.00138748
momentum: 0.419484",
"Arm 21_0
mean_accuracy: 0.922833 (SEM: None)
lr: 0.000284891
momentum: 0.128531",
"Arm 22_0
mean_accuracy: 0.961 (SEM: None)
lr: 0.000990392
momentum: 0.274323",
"Arm 23_0
mean_accuracy: 0.963333 (SEM: None)
lr: 0.0011598
momentum: 0.363949",
"Arm 24_0
mean_accuracy: 0.817 (SEM: None)
lr: 1e-06
momentum: 1",
"Arm 25_0
mean_accuracy: 0.9515 (SEM: None)
lr: 7.47008e-05
momentum: 0.900507",
"Arm 26_0
mean_accuracy: 0.958 (SEM: None)
lr: 0.0025543
momentum: 0.424799"
],
"type": "scatter",
"x": [
0.0017815258204423746,
3.130406215216603e-06,
0.28964990262194684,
0.017520843007271327,
0.004782501952270534,
6.552433729538144e-05,
0.005641284485486079,
4.4803925542715586e-05,
0.000827157915375537,
0.00014352847004093182,
1.51089048717613e-06,
1e-06,
0.0004971142441610986,
0.0004521490674253128,
5.873622132620575e-05,
1.657261161054976e-05,
0.0007917604932272899,
0.00012192163097013598,
0.00019133435635910388,
1.9180411079107894e-05,
0.0013874759589031765,
0.0002848905264214655,
0.000990391946370923,
0.0011598016322801991,
1e-06,
7.470075078289901e-05,
0.0025543035506047497
],
"xaxis": "x2",
"y": [
0.29959636926651,
0.7994204359129071,
0.5529317548498511,
0.9521782910451293,
0.9041602844372392,
0.13468657876120926,
0.0,
0.3955330132772445,
0.1884152833914496,
0.2843295714127677,
0.20831138100149377,
0.5379141507369006,
0.242501838622634,
0.4351890803107001,
0.6865920248676607,
1.0,
0.32103209393143367,
0.5311248033857279,
0.0,
0.7693899609371041,
0.4194844231488044,
0.12853067842465013,
0.27432326986554534,
0.3639493065178049,
1.0,
0.9005074161995618,
0.4247987515659271
],
"yaxis": "y2"
}
],
"layout": {
"annotations": [
{
"font": {
"size": 14
},
"showarrow": false,
"text": "Mean",
"x": 0.25,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
},
{
"font": {
"size": 14
},
"showarrow": false,
"text": "Standard Error",
"x": 0.8,
"xanchor": "center",
"xref": "paper",
"y": 1,
"yanchor": "bottom",
"yref": "paper"
}
],
"autosize": false,
"height": 450,
"hovermode": "closest",
"legend": {
"orientation": "h",
"x": 0,
"y": -0.25
},
"margin": {
"b": 100,
"l": 35,
"pad": 0,
"r": 35,
"t": 35
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"sequentialminus": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"width": 950,
"xaxis": {
"anchor": "y",
"autorange": false,
"domain": [
0.05,
0.45
],
"exponentformat": "e",
"range": [
-6.0,
-0.3979400086720376
],
"tickfont": {
"size": 11
},
"tickmode": "auto",
"title": {
"text": "lr"
},
"type": "log"
},
"xaxis2": {
"anchor": "y2",
"autorange": false,
"domain": [
0.6,
1
],
"exponentformat": "e",
"range": [
-6.0,
-0.3979400086720376
],
"tickfont": {
"size": 11
},
"tickmode": "auto",
"title": {
"text": "lr"
},
"type": "log"
},
"yaxis": {
"anchor": "x",
"autorange": false,
"domain": [
0,
1
],
"exponentformat": "e",
"range": [
0.0,
1.0
],
"tickfont": {
"size": 11
},
"tickmode": "auto",
"title": {
"text": "momentum"
},
"type": "linear"
},
"yaxis2": {
"anchor": "x2",
"autorange": false,
"domain": [
0,
1
],
"exponentformat": "e",
"range": [
0.0,
1.0
],
"tickfont": {
"size": 11
},
"tickmode": "auto",
"type": "linear"
}
}
},
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"render(\n",
" plot_contour(\n",
" model=ax.generation_strategy.model,\n",
" param_x=\"lr\",\n",
" param_y=\"momentum\",\n",
" metric_name=\"mean_accuracy\",\n",
" )\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"hoverinfo": "none",
"legendgroup": "",
"line": {
"width": 0
},
"mode": "lines",
"showlegend": false,
"type": "scatter",
"x": [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30
],
"y": [
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
96.1,
96.1,
96.1,
96.1,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45
]
},
{
"fill": "tonexty",
"fillcolor": "rgba(128,177,211,0.3)",
"legendgroup": "objective value",
"line": {
"color": "rgba(128,177,211,1)"
},
"mode": "lines",
"name": "objective value",
"type": "scatter",
"x": [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30
],
"y": [
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
96.1,
96.1,
96.1,
96.1,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45
]
},
{
"fill": "tonexty",
"fillcolor": "rgba(128,177,211,0.3)",
"hoverinfo": "none",
"legendgroup": "",
"line": {
"width": 0
},
"mode": "lines",
"showlegend": false,
"type": "scatter",
"x": [
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30
],
"y": [
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
94.39999999999999,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
95.35,
96.1,
96.1,
96.1,
96.1,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45,
96.45
]
}
],
"layout": {
"showlegend": true,
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"sequentialminus": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Model performance vs. # of iterations"
},
"xaxis": {
"title": {
"text": "Iteration"
}
},
"yaxis": {
"title": {
"text": "Accuracy"
}
}
}
},
"text/html": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# `plot_single_method` expects a 2-d array of means, because it expects to average means from multiple\n",
"# optimization runs, so we wrap out best objectives array in another array.\n",
"best_objectives = np.array(\n",
" [[trial.objective_mean * 100 for trial in ax.experiment.trials.values()]]\n",
")\n",
"best_objective_plot = optimization_trace_single_method(\n",
" y=np.maximum.accumulate(best_objectives, axis=1),\n",
" title=\"Model performance vs. # of iterations\",\n",
" ylabel=\"Accuracy\",\n",
")\n",
"render(best_objective_plot)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "python3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.11"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"012c8299cf5b4ac8a587b6b3e044b1f8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"0abe7bd29f68497895d9a4b2aff37f49": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ad6837b6cd1d48498a22f548a133002a",
"placeholder": "",
"style": "IPY_MODEL_98f81d5b435d4783afaa8e1cd1b97432",
"value": " 29696/? [00:00<00:00, 1317112.40it/s]"
}
},
"0e6c87e3adc54d3585d36c8e59a3af03": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"0f28155f4e7d42ae9f8d678fc34babf4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_e3aae2e8f4ea4d598f7995b1a3b99446",
"IPY_MODEL_dfc773221d6f49d0b60a894523ba30bb",
"IPY_MODEL_0f3fed9c3c4a444a98502afa23c70ac2"
],
"layout": "IPY_MODEL_bdadd11cdc7d4bf394f82bfbc6157044"
}
},
"0f3fed9c3c4a444a98502afa23c70ac2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_8d4cdc57ea054649a7103a4fd3ad9744",
"placeholder": "",
"style": "IPY_MODEL_e62193da48714965b4ee652f02015735",
"value": " 1649664/? [00:00<00:00, 28039601.70it/s]"
}
},
"13b0cc2f623941d09897311561699c00": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"1b3264cb23a1446cb827743b7ace6c87": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_20820b8d5d6a406f9c036145c1dacd24",
"IPY_MODEL_47c2090746f54ab0ab3634c773abafcb",
"IPY_MODEL_0abe7bd29f68497895d9a4b2aff37f49"
],
"layout": "IPY_MODEL_6b903761950148d4ac546ae9895ca97e"
}
},
"20820b8d5d6a406f9c036145c1dacd24": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ca420446ed43477da8be1fd8859c8a1a",
"placeholder": "",
"style": "IPY_MODEL_7af45c0ab18346c5aa554d9c6990920d",
"value": ""
}
},
"218bb58d0bda45adb402a7427a17e00c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_7cf02db024c24557b2993409cc7740ae",
"IPY_MODEL_4ce55158e8964729bb39ec48701235f3",
"IPY_MODEL_58efd94276ca4758a84a7abf5baeb041"
],
"layout": "IPY_MODEL_4643475e3a1b45cbbdd0abff1d3d83e6"
}
},
"228fbe5bcc1a484b9b2a2de852cd8610": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"378012d2f05d42e5a434a2109e3967aa": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"45b575a2b028498dadb94146ac997301": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"462aed5772aa4ee686e7814a4577aae8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"4643475e3a1b45cbbdd0abff1d3d83e6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"47c2090746f54ab0ab3634c773abafcb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_7198f3b093394a98b5c2f919207daf5c",
"max": 28881.0,
"min": 0.0,
"orientation": "horizontal",
"style": "IPY_MODEL_a9eb5e351a9e4b5d8991af635a08f0ff",
"value": 28881.0
}
},
"4ce55158e8964729bb39ec48701235f3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ebe51f3e998b4d329a328731a13f8619",
"max": 9912422.0,
"min": 0.0,
"orientation": "horizontal",
"style": "IPY_MODEL_5404869f937147ea9e9b7edfab73ef58",
"value": 9912422.0
}
},
"502d1904c65446f5b78cd06810282f1e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_69b16326fd7a4b528c18042f9e4094d1",
"IPY_MODEL_83bdfc23d0284ede9ce45745145ab9fd",
"IPY_MODEL_f8116579cc324ab4b701857a8cfc83f3"
],
"layout": "IPY_MODEL_f839882f330e4eaa90367334b258a953"
}
},
"5404869f937147ea9e9b7edfab73ef58": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"55c767a66dc04375980ff78e70b4f8b2": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"58efd94276ca4758a84a7abf5baeb041": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_012c8299cf5b4ac8a587b6b3e044b1f8",
"placeholder": "",
"style": "IPY_MODEL_13b0cc2f623941d09897311561699c00",
"value": " 9913344/? [00:00<00:00, 77029900.20it/s]"
}
},
"608455ec2b77490698fa489accfac09c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"69b16326fd7a4b528c18042f9e4094d1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_c0550e8d04cd42a282256342757abe80",
"placeholder": "",
"style": "IPY_MODEL_55c767a66dc04375980ff78e70b4f8b2",
"value": ""
}
},
"6b903761950148d4ac546ae9895ca97e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7198f3b093394a98b5c2f919207daf5c": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7af45c0ab18346c5aa554d9c6990920d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"7cf02db024c24557b2993409cc7740ae": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_ddc88f69f6924d7ea5d8115d6f1d22d3",
"placeholder": "",
"style": "IPY_MODEL_608455ec2b77490698fa489accfac09c",
"value": ""
}
},
"83bdfc23d0284ede9ce45745145ab9fd": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e42cd92cb3e64c6c8311622afbf16048",
"max": 4542.0,
"min": 0.0,
"orientation": "horizontal",
"style": "IPY_MODEL_ba9d647c062e49bca330831f2dbc6f14",
"value": 4542.0
}
},
"8d4cdc57ea054649a7103a4fd3ad9744": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"98f81d5b435d4783afaa8e1cd1b97432": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a9eb5e351a9e4b5d8991af635a08f0ff": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"ad6837b6cd1d48498a22f548a133002a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"b2d658228460435485f8b3afccfe7750": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ba9d647c062e49bca330831f2dbc6f14": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"bdadd11cdc7d4bf394f82bfbc6157044": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c0550e8d04cd42a282256342757abe80": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ca420446ed43477da8be1fd8859c8a1a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ddc88f69f6924d7ea5d8115d6f1d22d3": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"dfc773221d6f49d0b60a894523ba30bb": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_378012d2f05d42e5a434a2109e3967aa",
"max": 1648877.0,
"min": 0.0,
"orientation": "horizontal",
"style": "IPY_MODEL_0e6c87e3adc54d3585d36c8e59a3af03",
"value": 1648877.0
}
},
"e3aae2e8f4ea4d598f7995b1a3b99446": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_b2d658228460435485f8b3afccfe7750",
"placeholder": "",
"style": "IPY_MODEL_228fbe5bcc1a484b9b2a2de852cd8610",
"value": ""
}
},
"e42cd92cb3e64c6c8311622afbf16048": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e62193da48714965b4ee652f02015735": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"ebe51f3e998b4d329a328731a13f8619": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"f8116579cc324ab4b701857a8cfc83f3": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_462aed5772aa4ee686e7814a4577aae8",
"placeholder": "",
"style": "IPY_MODEL_45b575a2b028498dadb94146ac997301",
"value": " 5120/? [00:00<00:00, 232411.65it/s]"
}
},
"f839882f330e4eaa90367334b258a953": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}