Source code for ax.models.torch.botorch_modular.multi_fidelity

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from typing import Any, Dict, List, Optional, Tuple

from ax.core.search_space import SearchSpaceDigest
from ax.models.torch.botorch_modular.acquisition import Acquisition
from ax.models.torch.botorch_modular.surrogate import Surrogate
from ax.utils.common.constants import Keys
from botorch.acquisition.cost_aware import InverseCostWeightedUtility
from botorch.acquisition.utils import (
    expand_trace_observations,
    project_to_target_fidelity,
)
from botorch.models.cost import AffineFidelityCostModel
from torch import Tensor


[docs]class MultiFidelityAcquisition(Acquisition): # NOTE: Here, we do not consider using `IIDNormalSampler` and always # use the `SobolQMCNormalSampler`.
[docs] def compute_model_dependencies( self, surrogate: Surrogate, search_space_digest: SearchSpaceDigest, objective_weights: Tensor, pending_observations: Optional[List[Tensor]] = None, outcome_constraints: Optional[Tuple[Tensor, Tensor]] = None, linear_constraints: Optional[Tuple[Tensor, Tensor]] = None, fixed_features: Optional[Dict[int, float]] = None, options: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: target_fidelities = search_space_digest.target_fidelities if not target_fidelities: raise ValueError( # pragma: no cover "Target fidelities are required for {self.__class__.__name__}." ) dependencies = super().compute_model_dependencies( surrogate=surrogate, search_space_digest=search_space_digest, objective_weights=objective_weights, pending_observations=pending_observations, outcome_constraints=outcome_constraints, linear_constraints=linear_constraints, fixed_features=fixed_features, options=options, ) options = options or {} fidelity_weights = options.get(Keys.FIDELITY_WEIGHTS, None) if fidelity_weights is None: fidelity_weights = {f: 1.0 for f in target_fidelities} if not set(target_fidelities) == set(fidelity_weights): raise RuntimeError( "Must provide the same indices for target_fidelities " f"({set(target_fidelities)}) and fidelity_weights " f" ({set(fidelity_weights)})." ) cost_intercept = options.get(Keys.COST_INTERCEPT, 1.0) cost_model = AffineFidelityCostModel( fidelity_weights=fidelity_weights, fixed_cost=cost_intercept ) cost_aware_utility = InverseCostWeightedUtility(cost_model=cost_model) def project(X: Tensor) -> Tensor: return project_to_target_fidelity(X=X, target_fidelities=target_fidelities) def expand(X: Tensor) -> Tensor: return expand_trace_observations( X=X, fidelity_dims=sorted(target_fidelities), # pyre-fixme[16]: `Optional` has no attribute `get`. num_trace_obs=options.get(Keys.NUM_TRACE_OBSERVATIONS, 0), ) dependencies.update( { Keys.COST_AWARE_UTILITY: cost_aware_utility, Keys.PROJECT: project, Keys.EXPAND: expand, } ) return dependencies