Source code for ax.modelbridge.generation_strategy

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import annotations

from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass
from inspect import signature
from typing import Any, Callable, Dict, List, Optional, Set, Type, Union, Tuple

import pandas as pd
from ax.core.base_trial import BaseTrial, TrialStatus
from ax.core.data import Data
from ax.core.experiment import Experiment
from ax.core.generator_run import GeneratorRun
from ax.core.observation import ObservationFeatures
from ax.exceptions.core import DataRequiredError, NoDataError, UserInputError
from ax.exceptions.generation_strategy import (
    GenerationStrategyCompleted,
    MaxParallelismReachedException,
)
from ax.modelbridge.base import ModelBridge
from ax.modelbridge.registry import (
    ModelRegistryBase,
    _combine_model_kwargs_and_state,
    get_model_from_generator_run,
)
from ax.utils.common.base import Base, SortableBase
from ax.utils.common.kwargs import consolidate_kwargs, get_function_argument_names
from ax.utils.common.logger import _round_floats_for_logging, get_logger
from ax.utils.common.typeutils import checked_cast, not_none


logger = get_logger(__name__)


TModelFactory = Callable[..., ModelBridge]
MAX_CONDITIONS_GENERATED = 10000
MAX_GEN_DRAWS = 5
MAX_GEN_DRAWS_EXCEEDED_MESSAGE = (
    f"GenerationStrategy exceeded `MAX_GEN_DRAWS` of {MAX_GEN_DRAWS} while trying to "
    "generate a unique parameterization. This indicates that the search space has "
    "likely been fully explored, or that the sweep has converged. Considering "
    "GenerationStrategy complete."
)


def _filter_kwargs(function: Callable, **kwargs: Any) -> Any:
    """Filter out kwargs that are not applicable for a given function.
    Return a copy of given kwargs dict with only the required kwargs."""
    return {k: v for k, v in kwargs.items() if k in signature(function).parameters}


[docs]@dataclass class GenerationStep(SortableBase): """One step in the generation strategy, corresponds to a single model. Describes the model, how many trials will be generated with this model, what minimum number of observations is required to proceed to the next model, etc. NOTE: Model can be specified either from the model registry (`ax.modelbridge.registry.Models` or using a callable model constructor. Only models from the registry can be saved, and thus optimization can only be resumed if interrupted when using models from the registry. Args: model: A member of `Models` enum or a callable returning an instance of `ModelBridge` with an instantiated underlying `Model`. Refer to `ax/modelbridge/factory.py` for examples of such callables. num_trials: How many trials to generate with the model from this step. If set to -1, trials will continue to be generated from this model as long as `generation_strategy.gen` is called (available only for the last of the generation steps). min_trials_observed: How many trials must be completed before the generation strategy can proceed to the next step. Defaults to 0. If `num_trials` of a given step have been generated but `min_trials_ observed` have not been completed, a call to `generation_strategy.gen` will fail with a `DataRequiredError`. max_parallelism: How many trials generated in the course of this step are allowed to be run (i.e. have `trial.status` of `RUNNING`) simultaneously. If `max_parallelism` trials from this step are already running, a call to `generation_strategy.gen` will fail with a `MaxParallelismReached Exception`, indicating that more trials need to be completed before generating and running next trials. use_update: Whether to use `model_bridge.update` instead or reinstantiating model + bridge on every call to `gen` within a single generation step. NOTE: use of `update` on stateful models that do not implement `_get_state` may result in inability to correctly resume a generation strategy from a serialized state. enforce_num_trials: Whether to enforce that only `num_trials` are generated from the given step. If False and `num_trials` have been generated, but `min_trials_observed` have not been completed, `generation_strategy.gen` will continue generating trials from the current step, exceeding `num_ trials` for it. Allows to avoid `DataRequiredError`, but delays proceeding to next generation step. model_kwargs: Dictionary of kwargs to pass into the model constructor on instantiation. E.g. if `model` is `Models.SOBOL`, kwargs will be applied as `Models.SOBOL(**model_kwargs)`; if `model` is `get_sobol`, `get_sobol( **model_kwargs)`. NOTE: if generation strategy is interrupted and resumed from a stored snapshot and its last used model has state saved on its generator runs, `model_kwargs` is updated with the state dict of the model, retrieved from the last generator run of this generation strategy. model_gen_kwargs: Each call to `generation_strategy.gen` performs a call to the step's model's `gen` under the hood; `model_gen_kwargs` will be passed to the model's `gen` like so: `model.gen(**model_gen_kwargs)`. index: Index of this generation step, for use internally in `Generation Strategy`. Do not assign as it will be reassigned when instantiating `GenerationStrategy` with a list of its steps. should_deduplicate: Whether to deduplicate the parameters of proposed arms against those of previous arms via rejection sampling. If this is True, the generation strategy will discard generator runs produced from the generation step that has `should_deduplicate=True` if they contain arms already present on the experiment and replace them with new generator runs. If no generator run with entirely unique arms could be produced in 5 attempts, a `GenerationStrategyCompleted` error will be raised, as we assume that the optimization converged when the model can no longer suggest unique arms. """ model: Union[ModelRegistryBase, Callable[..., ModelBridge]] num_trials: int min_trials_observed: int = 0 max_parallelism: Optional[int] = None use_update: bool = False enforce_num_trials: bool = True # Kwargs to pass into the Models constructor (or factory function). model_kwargs: Optional[Dict[str, Any]] = None # Kwargs to pass into the Model's `.gen` function. model_gen_kwargs: Optional[Dict[str, Any]] = None index: int = -1 # Index of this step, set internally. # Whether the GS should deduplicate the suggested arms against # the arms already present on the experiment. If this is `True` # on a given generation step, during that step the generation # strategy will discard a generator run that contains an arm # already present on the experiment and produce a new generator # run instead before returning it from `gen` or `_gen_multiple`. should_deduplicate: bool = False @property def model_name(self) -> str: # Model can be defined as member of Models enum or as a factory function, # so we use Models member (str) value if former and function name if latter. if isinstance(self.model, ModelRegistryBase): return checked_cast(str, checked_cast(ModelRegistryBase, self.model).value) try: # `model` is defined via a factory function. return self.model.__name__ # pyre-fixme[16]: union has no attr __name__ except Exception: raise TypeError( # pragma: no cover f"`model` {self.model} was not a member of `Models` or a function." ) @property def _unique_id(self) -> str: return str(self.index)
[docs]class GenerationStrategy(Base): """GenerationStrategy describes which model should be used to generate new points for which trials, enabling and automating use of different models throughout the optimization process. For instance, it allows to use one model for the initialization trials, and another one for all subsequent trials. In the general case, this allows to automate use of an arbitrary number of models to generate an arbitrary numbers of trials described in the `trials_per_model` argument. Args: steps: A list of `GenerationStep` describing steps of this strategy. name: An optional name for this generaiton strategy. If not specified, strategy's name will be names of its steps' models joined with '+'. """ _name: Optional[str] _steps: List[GenerationStep] _curr: GenerationStep # Current step in the strategy. # Whether all models in this GS are in Models registry enum. _uses_registered_models: bool # All generator runs created through this generation strategy, in chronological # order. _generator_runs: List[GeneratorRun] # Experiment, for which this generation strategy has generated trials, if # it exists. _experiment: Optional[Experiment] = None # Trial indices as last seen by the model; updated in `_model` property setter. _seen_trial_indices_by_status = None _model: Optional[ModelBridge] = None # Current model. def __init__(self, steps: List[GenerationStep], name: Optional[str] = None) -> None: assert isinstance(steps, list) and all( isinstance(s, GenerationStep) for s in steps ), "Steps must be a GenerationStep list." self._name = name self._steps = steps self._uses_registered_models = True self._generator_runs = [] for idx, step in enumerate(self._steps): if step.num_trials == -1: if idx < len(self._steps) - 1: raise UserInputError( # pragma: no cover "Only last step in generation strategy can have `num_trials` " "set to -1 to indicate that the model in the step should " "be used to generate new trials indefinitely." ) elif step.num_trials < 1: # pragma: no cover raise UserInputError( "`num_trials` must be positive or -1 (indicating unlimited) " "for all generation steps." ) step.index = idx if not isinstance(step.model, ModelRegistryBase): self._uses_registered_models = False if not self._uses_registered_models: logger.info( "Using model via callable function, " "so optimization is not resumable if interrupted." ) self._curr = steps[0] self._seen_trial_indices_by_status = None @property def name(self) -> str: """Name of this generation strategy. Defaults to a combination of model names provided in generation steps.""" if self._name is not None: return not_none(self._name) factory_names = (step.model_name for step in self._steps) # Trim the "get_" beginning of the factory function if it's there. factory_names = (n[4:] if n[:4] == "get_" else n for n in factory_names) self._name = "+".join(factory_names) return not_none(self._name) @name.setter def name(self, name: str) -> None: """Set generation strategy name.""" self._name = name @property def model_transitions(self) -> List[int]: """List of trial indices where a transition happened from one model to another.""" gen_changes = [step.num_trials for step in self._steps] return [sum(gen_changes[: i + 1]) for i in range(len(gen_changes))][:-1] @property def model(self) -> Optional[ModelBridge]: """Current model in this strategy. Returns None if no model has been set yet (i.e., if no generator runs have been produced from this GS). """ return self._model # pragma: no cover @property def experiment(self) -> Experiment: """Experiment, currently set on this generation strategy.""" if self._experiment is None: # pragma: no cover raise ValueError("No experiment set on generation strategy.") return not_none(self._experiment) @experiment.setter def experiment(self, experiment: Experiment) -> None: """If there is an experiment set on this generation strategy as the experiment it has been generating generator runs for, check if the experiment passed in is the same as the one saved and log an information statement if its not. Set the new experiment on this generation strategy. """ if self._experiment is None or experiment._name == self.experiment._name: self._experiment = experiment else: # pragma: no cover raise ValueError( "This generation strategy has been used for experiment " f"{self.experiment._name} so far; cannot reset experiment" f" to {experiment._name}. If this is a new optimization, " "a new generation strategy should be created instead." ) @property def uses_non_registered_models(self) -> bool: """Whether this generation strategy involves models that are not registered and therefore cannot be stored.""" return not self._uses_registered_models @property def last_generator_run(self) -> Optional[GeneratorRun]: """Latest generator run produced by this generation strategy. Returns None if no generator runs have been produced yet. """ # Used to restore current model when decoding a serialized GS. return self._generator_runs[-1] if self._generator_runs else None @property def trial_indices_by_step(self) -> Dict[int, Set[int]]: """Find trials in experiment that are not mapped to a generation step yet and add them to the mapping of trials by generation step. """ trial_indices_by_step = defaultdict(set) for trial_index, trial in self.experiment.trials.items(): if ( trial._generation_step_index is not None and trial._generation_step_index <= self._curr.index ): trial_indices_by_step[trial._generation_step_index].add(trial_index) return trial_indices_by_step @property def trials_as_df(self) -> Optional[pd.DataFrame]: """Puts information on individual trials into a data frame for easy viewing. For example: Gen. Step | Model | Trial Index | Trial Status | Arm Parameterizations 0 | Sobol | 0 | RUNNING | {"0_0":{"x":9.17...}} """ logger.info( "Note that parameter values in dataframe are rounded to 2 decimal " "points; the values in the dataframe are thus not the exact ones " "suggested by Ax in trials." ) if self._experiment is None or all( len(trials) == 0 for trials in self.trial_indices_by_step.values() ): return None records = [ { "Generation Step": step_idx, "Generation Model": self._steps[step_idx].model_name, "Trial Index": trial_idx, "Trial Status": self.experiment.trials[trial_idx].status.name, "Arm Parameterizations": { arm.name: _round_floats_for_logging(arm.parameters) for arm in self.experiment.trials[trial_idx].arms }, } for step_idx, trials in self.trial_indices_by_step.items() for trial_idx in trials ] return pd.DataFrame.from_records(records).reindex( columns=[ "Generation Step", "Generation Model", "Trial Index", "Trial Status", "Arm Parameterizations", ] ) @property def num_running_trials_this_step(self) -> int: """Number of trials in status `RUNNING` for the current generation step of this strategy. """ num_running = 0 for trial in self.experiment.trials.values(): if ( trial._generation_step_index == self._curr.index and trial.status.is_running ): num_running += 1 return num_running @property def num_can_complete_this_step(self) -> int: """Number of trials for the current step in generation strategy that can be completed (so are not in status `FAILED` or `ABANDONED`). Used to keep track of how many generator runs (that become trials) can be produced from the current generation step. NOTE: This includes `COMPLETED` trials. """ step_trials = self.trial_indices_by_step[self._curr.index] by_status = self.experiment.trial_indices_by_status # Number of trials that will not be `COMPLETED`, used to avoid counting # unsuccessfully terminated trials against the number of generated trials # during determination of whether enough trials have been generated and # completed to proceed to the next generation step. num_will_not_complete = len( step_trials.intersection( by_status[TrialStatus.FAILED].union(by_status[TrialStatus.ABANDONED]) ) ) return len(step_trials) - num_will_not_complete @property def num_completed_this_step(self) -> int: """Number of trials in status `COMPLETED` or `EARLY_STOPPED` for the current generation step of this strategy. We include early stopped trials because their data will be used in the model, so they are completed from the model's point of view and should count towards that total. """ step_trials = self.trial_indices_by_step[self._curr.index] by_status = self.experiment.trial_indices_by_status return len( step_trials.intersection( by_status[TrialStatus.COMPLETED] | by_status[TrialStatus.EARLY_STOPPED] ) )
[docs] def gen( self, experiment: Experiment, data: Optional[Data] = None, n: int = 1, pending_observations: Optional[Dict[str, List[ObservationFeatures]]] = None, **kwargs: Any, ) -> GeneratorRun: """Produce the next points in the experiment. Additional kwargs passed to this method are propagated directly to the underlying model's `gen`, along with the `model_gen_kwargs` set on the current generation step. NOTE: Each generator run returned from this function must become a single trial on the experiment to comply with assumptions made in generation strategy. Do not split one generator run produced from generation strategy into multiple trials (never making a generator run into a trial is allowed). Args: experiment: Experiment, for which the generation strategy is producing a new generator run in the course of `gen`, and to which that generator run will be added as trial(s). Information stored on the experiment (e.g., trial statuses) is used to determine which model will be used to produce the generator run returned from this method. data: Optional data to be passed to the underlying model's `gen`, which is called within this method and actually produces the resulting generator run. By default, data is all data on the `experiment` if `use_update` is False and only the new data since the last call to this method if `use_update` is True. n: Integer representing how many arms should be in the generator run produced by this method. NOTE: Some underlying models may ignore the `n` and produce a model-determined number of arms. In that case this method will also output a generator run with number of arms that can differ from `n`. pending_observations: A map from metric name to pending observations for that metric, used by some models to avoid resuggesting points that are currently being evaluated. """ return self._gen_multiple( experiment=experiment, num_generator_runs=1, data=data, n=n, pending_observations=pending_observations, **kwargs, )[0]
[docs] def current_generator_run_limit( self, ) -> Tuple[int, bool]: """How many generator runs can this generation strategy generate right now, assuming each one of them becomes its own trial, and whether optimization is completed. NOTE: This method might move the generation strategy to the next step, which is safe, as the next call to ``gen`` will just pick up from there. Returns: a two-item tuple of: - the number of generator runs that can currently be produced, with -1 meaning unlimited generator runs, - whether optimization is completed and the generation strategy cannot generate any more generator runs at all. """ try: self._maybe_move_to_next_step(raise_data_required_error=False) except GenerationStrategyCompleted: return 0, True to_gen = self._num_trials_to_gen_and_complete_in_curr_step()[0] if to_gen < -1: # `_num_trials_to_gen_and_complete_in_curr_step()` should return value # of -1 or greater always. raise RuntimeError( "Number of trials left to generate in current generation step is " f"{to_gen}. This is an unexpected state of the generation strategy." ) until_max_parallelism = self._num_remaining_trials_until_max_parallelism( raise_max_parallelism_reached_exception=False ) # If there is no limitation on the number of trials in the step and # there is a parallelism limit, return number of trials until that limit. if until_max_parallelism is not None and to_gen == -1: return until_max_parallelism, False # If there is a limitation on the number of trials in the step and also on # parallelism, return the number of trials until either one of the limits. if until_max_parallelism is not None: # NOTE: to_gen must be >= 0 here return min(to_gen, until_max_parallelism), False # If there is no limit on parallelism, return how many trials are left to # gen in this step (might be -1 indicating unlimited). return to_gen, False
[docs] def clone_reset(self) -> GenerationStrategy: """Copy this generation strategy without it's state.""" return GenerationStrategy(name=self.name, steps=self._steps)
def __repr__(self) -> str: """String representation of this generation strategy.""" repr = f"GenerationStrategy(name='{self.name}', steps=[" remaining_trials = "subsequent" if len(self._steps) > 1 else "all" for step in self._steps: num_trials = ( f"{step.num_trials}" if step.num_trials != -1 else remaining_trials ) try: model_name = step.model_name except TypeError: model_name = "model with unknown name" repr += f"{model_name} for {num_trials} trials, " repr = repr[:-2] repr += "])" return repr # ------------------------- Candidate generation helpers. ------------------------- def _gen_multiple( self, experiment: Experiment, num_generator_runs: int, data: Optional[Data] = None, n: int = 1, pending_observations: Optional[Dict[str, List[ObservationFeatures]]] = None, **kwargs: Any, ) -> List[GeneratorRun]: """Produce multiple generator runs at once, to be made into multiple trials on the experiment. NOTE: This is used to ensure that maximum paralellism and number of trials per step are not violated when producing many generator runs from this generation strategy in a row. Without this function, if one generates multiple generator runs without first making any of them into running trials, generation strategy cannot enforce that it only produces as many generator runs as are allowed by the paralellism limit and the limit on number of trials in current step. Args: experiment: Experiment, for which the generation strategy is producing a new generator run in the course of `gen`, and to which that generator run will be added as trial(s). Information stored on the experiment (e.g., trial statuses) is used to determine which model will be used to produce the generator run returned from this method. data: Optional data to be passed to the underlying model's `gen`, which is called within this method and actually produces the resulting generator run. By default, data is all data on the `experiment` if `use_update` is False and only the new data since the last call to this method if `use_update` is True. n: Integer representing how many arms should be in the generator run produced by this method. NOTE: Some underlying models may ignore the `n` and produce a model-determined number of arms. In that case this method will also output a generator run with number of arms that can differ from `n`. pending_observations: A map from metric name to pending observations for that metric, used by some models to avoid resuggesting points that are currently being evaluated. """ self.experiment = experiment self._maybe_move_to_next_step() self._set_or_update_current_model(data=data) self._save_seen_trial_indices() # Make sure to not make too many generator runs and # exceed maximum allowed paralellism for the step. num_until_max_parallelism = self._num_remaining_trials_until_max_parallelism() if num_until_max_parallelism is not None: num_generator_runs = min(num_generator_runs, num_until_max_parallelism) # Make sure not to extend number of trials expected in step. if self._curr.enforce_num_trials and self._curr.num_trials > 0: num_generator_runs = min( num_generator_runs, self._curr.num_trials - self.num_can_complete_this_step, ) model = not_none(self.model) generator_runs = [] for _ in range(num_generator_runs): try: generator_run = model.gen( n=n, pending_observations=pending_observations, **consolidate_kwargs( kwargs_iterable=[self._curr.model_gen_kwargs, kwargs], keywords=get_function_argument_names(model.gen), ), ) # NOTE: Might need to revisit the behavior of deduplication when # generating multi-arm generator runs (to be made into batch trials). if self._curr.should_deduplicate: n_gen_draws = 1 while any( arm.signature in self.experiment.arms_by_signature for arm in generator_run.arms ): n_gen_draws += 1 if n_gen_draws > MAX_GEN_DRAWS: raise GenerationStrategyCompleted( MAX_GEN_DRAWS_EXCEEDED_MESSAGE ) generator_run = model.gen( n=n, pending_observations=pending_observations, **consolidate_kwargs( kwargs_iterable=[ self._curr.model_gen_kwargs, kwargs, ], keywords=get_function_argument_names(model.gen), ), ) generator_run._generation_step_index = self._curr.index self._generator_runs.append(generator_run) generator_runs.append(generator_run) except DataRequiredError as err: # Model needs more data, so we log the error and return # as many generator runs as we were able to produce, unless # no trials were produced at all (in which case its safe to raise). if len(generator_runs) == 0: raise logger.debug(f"Model required more data: {err}.") break return generator_runs # ------------------------- Model selection logic helpers. ------------------------- def _set_or_update_current_model(self, data: Optional[Data]) -> None: if self._model is not None and self._curr.use_update: self._update_current_model(data=data) else: self._set_current_model(data=data) def _num_trials_to_gen_and_complete_in_curr_step(self) -> Tuple[int, int]: """Returns how many generator runs (to be made into a trial each) are left to generate in current step and how many are left to be completed in it before this generation strategy can move to the next step. NOTE: returns (-1, -1) if the number of trials to be generated from the given step is unlimited (and therefore it must be the last generation step). """ if self._curr.num_trials == -1: return -1, -1 # More than `num_trials` can be generated (if not `enforce_num_trials=False`) # and more than `min_trials_observed` can be completed (if `min_trials_observed # < `num_trials`), so `left_to_gen` and `left_to_complete` should be clamped # to lower bound of 0. left_to_gen = max(self._curr.num_trials - self.num_can_complete_this_step, 0) left_to_complete = max( self._curr.min_trials_observed - self.num_completed_this_step, 0 ) return left_to_gen, left_to_complete def _num_remaining_trials_until_max_parallelism( self, raise_max_parallelism_reached_exception: bool = True ) -> Optional[int]: """Returns how many generator runs (to be made into a trial each) are left to generate before the `max_parallelism` limit is reached for the current generation step. Args: raise_max_parallelism_reached_exception: Whether to raise ``MaxParallelismReachedException`` if number of trials running in this generation step exceeds maximum parallelism for it. """ max_parallelism = self._curr.max_parallelism num_running = self.num_running_trials_this_step if max_parallelism is None: return None # There was no `max_parallelism` limit. if raise_max_parallelism_reached_exception and num_running >= max_parallelism: raise MaxParallelismReachedException( step_index=self._curr.index, model_name=self._curr.model_name, num_running=num_running, ) return max_parallelism - num_running def _maybe_move_to_next_step(self, raise_data_required_error: bool = True) -> bool: """Moves this generation strategy to next step if conditions for moving are met. This method is safe to use both when generating candidates or simply checking how many generator runs (to be made into trials) can currently be produced. Conditions for moving to next step: 1. ``num_trials`` in current generation step have been generated (generation strategy produced that many generator runs, which were then attached to trials), 2. ``min_trials_observed`` in current generation step have been completed, 3. current step is not the last in this generation strategy. NOTE: this method raises ``GenerationStrategyComplete`` error if conditions 1 and 2 above are met, but the current step is the last in generation strategy. It also raises ``DataRequiredError`` if all conditions below are true: 1. ``raise_data_required_error`` argument is ``True``, 2. ``num_trials`` in current generation step have been generated, 3. ``min_trials_observed`` in current generation step have not been completed, 4. ``enforce_num_trials`` in current generation step is ``True``. Args: raise_data_required_error: Whether to raise ``DataRequiredError`` in the case detailed above. Not raising the error is useful if just looking to check how many generator runs (to be made into trials) can be produced, but not actually producing them yet. Returns: Whether generation strategy moved to the next step. """ to_gen, to_complete = self._num_trials_to_gen_and_complete_in_curr_step() if to_gen == to_complete == -1: # Unlimited trials, never moving to next step. return False enforcing_num_trials = self._curr.enforce_num_trials trials_left_to_gen = to_gen > 0 trials_left_to_complete = to_complete > 0 # If there is something left to gen or complete, we don't move to next step. if trials_left_to_gen or trials_left_to_complete: # Check that minimum observed_trials is satisfied if it's enforced. raise_error = raise_data_required_error if raise_error and enforcing_num_trials and not trials_left_to_gen: raise DataRequiredError( "All trials for current model have been generated, but not enough " "data has been observed to fit next model. Try again when more data" " are available." ) return False # If nothing left to gen or complete, move to next step if one is available. if len(self._steps) == self._curr.index + 1: raise GenerationStrategyCompleted( f"Generation strategy {self} generated all the trials as " "specified in its steps." ) self._curr = self._steps[self._curr.index + 1] # Moving to the next step also entails unsetting this GS's model (since # new step's model will be initialized for the first time, so we don't # try to `update` it but rather initialize with all the data even if # `use_update` is true for the new generation step; this is done in # `self._set_or_update_current_model). self._model = None return True def _set_current_model(self, data: Optional[Data]) -> None: """Instantiate the current model with all available data.""" model_kwargs = self._curr.model_kwargs or {} # If last generator run's index matches the current step, extract # model state from last generator run and pass it to the model # being instantiated in this function. lgr = self.last_generator_run if ( lgr is not None and lgr._generation_step_index == self._curr.index and lgr._model_state_after_gen ): model_kwargs = _combine_model_kwargs_and_state( model_kwargs=model_kwargs, generator_run=lgr, model_class=not_none(not_none(self.model).model.__class__), ) if data is None: if self._curr.use_update: # If the new step is using `update`, it's important to instantiate # the model with data for completed trials only, so later we can # update it with data for new trials as they become completed. # `experiment.lookup_data` can lookup all available data, including # for non-completed trials (depending on how the experiment's metrics # implement `fetch_experiment_data`). We avoid fetching data for # trials with statuses other than `COMPLETED`, by fetching specifically # for `COMPLETED` trials. avail_while_running_metrics = { m.name for m in self.experiment.metrics.values() if m.is_available_while_running() } if avail_while_running_metrics: raise NotImplementedError( f"Metrics {avail_while_running_metrics} are available while " "trial is running, but use of `update` functionality in " "generation strategy relies on new data being available upon " "trial completion." ) data = self.experiment.lookup_data( trial_indices=self.experiment.trial_indices_by_status[ TrialStatus.COMPLETED ] ) else: data = self.experiment.lookup_data() # By the time we get here, we will have already transitioned # to a new step, but if previou step required observed data, # we should raise an error even if enough trials were completed. # Such an empty data case does indicate an invalid state; this # check is to improve the experience of detecting and debugging # the invalid state that led to this. previous_step_required_observations = ( self._curr.index > 0 and self._steps[self._curr.index - 1].min_trials_observed > 0 ) if data.df.empty and previous_step_required_observations: raise NoDataError( f"Observed data is required for generation step #{self._curr.index} " f"(model {self._curr.model_name}), but fetched data was empty. " "Something is wrong with experiment setup -- likely metrics do not " "implement fetching logic (check your metrics) or no data was " "attached to experiment for completed trials." ) if not data.df.empty: trial_indices_in_data = sorted(data.df["trial_index"].unique()) logger.debug(f"Setting model with data for trials: {trial_indices_in_data}") # TODO(jej)[T87591836] Support non-`Data` data types. if isinstance(self._curr.model, ModelRegistryBase): # pyre-fixme [6]: Incompat param: Expect `Data` got `AbstractDataFrameData` self._set_current_model_from_models_enum(data=data, **model_kwargs) else: # If model was not specified as Models member, it was specified as a # factory function. # pyre-fixme [6]: Incompat param: Expect `Data` got `AbstractDataFrameData` self._set_current_model_from_factory_function(data=data, **model_kwargs) def _update_current_model(self, data: Optional[Data]) -> None: """Update the current model with new data (data for trials that have been completed since the last call to `GenerationStrategy.gen`). """ if self._model is None: raise ValueError("Cannot update if no model instantiated.") # Should only pass data that is new since last call to `gen`, to the # underlying model's `update`. newly_completed_trials = self._find_trials_completed_since_last_gen() if len(newly_completed_trials) == 0: logger.debug( "There were no newly completed trials since last model update." ) return if data is None: new_data = self.experiment.lookup_data(trial_indices=newly_completed_trials) if new_data.df.empty: logger.info("Skipping model update as there is no new data.") return elif data.df.empty: logger.info("Skipping model update as data supplied to `gen` is empty.") return else: new_data = Data( # pyre-fixme[6]: Expected `Optional[pd.core.frame.DataFrame]` for # 1st param but got `Series`. df=data.df[data.df.trial_index.isin(newly_completed_trials)] ) # We definitely have non-empty new data by now. trial_indices_in_new_data = sorted(new_data.df["trial_index"].unique()) logger.info(f"Updating model with data for trials: {trial_indices_in_new_data}") # pyre-fixme [6]: Incompat param: Expected `Data` got `AbstractDataFrameData` not_none(self._model).update(experiment=self.experiment, new_data=new_data) def _set_current_model_from_models_enum(self, data: Data, **kwargs: Any) -> None: """Instantiate the current model, provided through a Models enum member function, with the provided data and kwargs.""" self._model = self._curr.model(experiment=self.experiment, data=data, **kwargs) def _set_current_model_from_factory_function( self, data: Data, **kwargs: Any ) -> None: """Instantiate the current model, provided through a callable factory function, with the provided data and kwargs.""" model = self._curr.model assert not isinstance(model, ModelRegistryBase) and callable(model) self._model = self._curr.model( **_filter_kwargs( self._curr.model, experiment=self.experiment, data=data, # Some factory functions (like `get_sobol`) require search space # instead of experiment. search_space=self.experiment.search_space, **kwargs, ) ) def _restore_model_from_generator_run( self, models_enum: Optional[Type[ModelRegistryBase]] = None ) -> None: """Reinstantiates the most recent model on this generation strategy from the last generator run it produced. NOTE: Uses model and model bridge kwargs stored on the generator run, as well as the model state attributes stored on the generator run. """ generator_run = self.last_generator_run if generator_run is None: raise ValueError("No generator run was stored on generation strategy.") if self._experiment is None: # pragma: no cover raise ValueError("No experiment was set on this generation strategy.") data = self.experiment.lookup_data() self._model = get_model_from_generator_run( generator_run=generator_run, experiment=self.experiment, # pyre-fixme [6]: Incompat param: Expect `Data` got `AbstractDataFrameData` data=data, models_enum=models_enum, ) self._save_seen_trial_indices() # ------------------------- State-tracking helpers. ------------------------- def _save_seen_trial_indices(self) -> None: """Saves Experiment's `trial_indices_by_status` at the time of the model's last `gen` (so these `trial_indices_by_status` reflect which trials model has seen the data for). Useful when `use_update=True` for a given generation step. """ self._seen_trial_indices_by_status = deepcopy( self.experiment.trial_indices_by_status ) def _find_trials_completed_since_last_gen(self) -> Set[int]: """Retrieves indices of trials that have been completed or updated with data since the last call to `GenerationStrategy.gen`. """ completed_now = self.experiment.trial_indices_by_status[TrialStatus.COMPLETED] if self._seen_trial_indices_by_status is None: return completed_now completed_before = not_none(self._seen_trial_indices_by_status)[ TrialStatus.COMPLETED ] return completed_now.difference(completed_before) def _register_trial_data_update(self, trial: BaseTrial) -> None: """Registers that a given trial has new data even though it's a trial that has been completed before. Useful only for generation steps that have `use_update= True`, as the information registered by this function is used for identifying new data since last call to `GenerationStrategy.gen`. """ # TODO[T65857344]: store information about trial update to pass with `new_data` # to `model_update`. This information does not need to be stored, since when # restoring generation strategy from serialized form, all data will is # refetched and the underlying model is re-fit. if any(s.use_update for s in self._steps): raise NotImplementedError( "Updating completed trials with new data is not yet supported for " "generation strategies that leverage `model.update` functionality." )