Source code for ax.modelbridge.transforms.utils
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from __future__ import annotations
from collections import defaultdict
from math import isnan
from numbers import Number
from typing import Callable, Dict, List, Tuple, Union, Any
import numpy as np
from ax.core.observation import ObservationData
from scipy.stats import norm
[docs]class ClosestLookupDict(dict):
"""A dictionary with numeric keys that looks up the closest key."""
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self._keys = sorted(self.keys())
def __setitem__(self, key: Number, val: Any) -> None:
if not isinstance(key, Number):
raise ValueError("ClosestLookupDict only allows numerical keys.")
super().__setitem__(key, val)
ipos = np.searchsorted(self._keys, key)
self._keys.insert(ipos, key)
def __getitem__(self, key: Number) -> Any:
try:
return super().__getitem__(key)
except KeyError:
if not self.keys():
raise RuntimeError("ClosestLookupDict is empty.")
ipos = np.searchsorted(self._keys, key)
if ipos == 0:
return super().__getitem__(self._keys[0])
elif ipos == len(self._keys):
return super().__getitem__(self._keys[-1])
lkey, rkey = self._keys[ipos - 1 : ipos + 1]
if np.abs(key - lkey) <= np.abs(key - rkey): # pyre-ignore [58]
return super().__getitem__(lkey)
else:
return super().__getitem__(rkey)
[docs]def get_data(
observation_data: List[ObservationData], metric_names: Union[List[str], None] = None
) -> Dict[str, List[float]]:
"""Extract all metrics if `metric_names` is None."""
Ys = defaultdict(list)
for obsd in observation_data:
for i, m in enumerate(obsd.metric_names):
if metric_names is None or m in metric_names:
Ys[m].append(obsd.means[i])
return Ys
[docs]def match_ci_width_truncated(
mean: float,
variance: float,
transform: Callable[[float], float],
level: float = 0.95,
margin: float = 0.001,
lower_bound: float = 0.0,
upper_bound: float = 1.0,
clip_mean: bool = False,
) -> Tuple[float, float]:
"""Estimate a transformed variance using the match ci width method.
See log_y transform for the original. Here, bounds are forced to lie
within a [lower_bound, upper_bound] interval after transformation."""
fac = norm.ppf(1 - (1 - level) / 2)
d = fac * np.sqrt(variance)
if clip_mean:
mean = np.clip(mean, lower_bound + margin, upper_bound - margin)
right = min(mean + d, upper_bound - margin)
left = max(mean - d, lower_bound + margin)
width_asym = transform(right) - transform(left)
new_mean = transform(mean)
new_variance = float("nan") if isnan(variance) else (width_asym / 2 / fac) ** 2
return new_mean, new_variance