#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from random import random
from typing import Any, List, Optional
import numpy as np
from ax.core.base_trial import BaseTrial
from ax.core.map_data import MapData
from ax.metrics.noisy_function_map import NoisyFunctionMapMetric
from ax.utils.common.typeutils import checked_cast, not_none
from ax.utils.measurement.synthetic_functions import branin
TIMESTAMP_KWARGS = {"map_keys": ["timestamp"], "timestamp": [0, 1, 2]}
FIDELITY_KWARGS = {"map_keys": ["fidelity"], "fidelity": [0.1, 0.4, 0.7, 1.0]}
[docs]class BraninTimestampMapMetric(NoisyFunctionMapMetric):
def __init__(
self,
name: str,
param_names: List[str],
noise_sd: float = 0.0,
lower_is_better: Optional[bool] = None,
rate: Optional[float] = None,
) -> None:
"""A Branin map metric with an optional multiplicative factor
of `1 + exp(-rate * t)` where `t` is the runtime of the trial.
If the multiplicative factor is used, then at `t = 0`, the function
is twice the usual value, while as `t` becomes large, the values
approach the standard Branin values.
Args:
name: Name of the metric.
param_names: An ordered list of names of parameters to be passed
to the deterministic function.
noise_sd: Scale of normal noise added to the function result.
lower_is_better: Flag for metrics which should be minimized.
rate: Parameter of the multiplicative factor.
"""
self.rate = rate
super().__init__(
name=name,
param_names=param_names,
noise_sd=noise_sd,
lower_is_better=lower_is_better,
)
[docs] def fetch_trial_data(
self, trial: BaseTrial, noisy: bool = True, **kwargs: Any
) -> MapData:
return super().fetch_trial_data(
trial=trial, noisy=noisy, **kwargs, **TIMESTAMP_KWARGS
)
[docs] def f(self, x: np.ndarray) -> float:
x1, x2, t = x
if self.rate is not None:
weight = 1.0 + np.exp(-not_none(self.rate) * t)
else:
weight = 1.0
return checked_cast(float, branin(x1=x1, x2=x2)) * weight
[docs]class BraninFidelityMapMetric(NoisyFunctionMapMetric):
[docs] def fetch_trial_data(
self, trial: BaseTrial, noisy: bool = True, **kwargs: Any
) -> MapData:
return super().fetch_trial_data(
trial=trial, noisy=noisy, **kwargs, **FIDELITY_KWARGS
)
[docs] def f(self, x: np.ndarray) -> float:
x1, x2, fidelity = x
fidelity_penalty = random() * math.pow(1.0 - fidelity, 2.0)
return checked_cast(float, branin(x1=x1, x2=x2)) - fidelity_penalty