Source code for ax.core.metric
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import TYPE_CHECKING, Any, Iterable, Optional
from ax.core.base import Base
from ax.core.data import Data
if TYPE_CHECKING: # pragma: no cover
# import as module to make sphinx-autodoc-typehints happy
from ax import core # noqa F401
[docs]class Metric(Base):
"""Base class for representing metrics.
Attributes:
lower_is_better: Flag for metrics which should be minimized.
"""
def __init__(self, name: str, lower_is_better: Optional[bool] = None) -> None:
"""Inits Metric.
Args:
name: Name of metric.
lower_is_better: Flag for metrics which should be minimized.
"""
self._name = name
self.lower_is_better = lower_is_better
@property
def name(self) -> str:
"""Get name of metric."""
return self._name
[docs] def fetch_trial_data(
self, trial: "core.base_trial.BaseTrial", **kwargs: Any
) -> Data:
"""Fetch data for one trial."""
raise NotImplementedError # pragma: no cover
[docs] def fetch_experiment_data(
self, experiment: "core.experiment.Experiment", **kwargs: Any
) -> Data:
"""Fetch this metric's data for an experiment.
Default behavior is to fetch data from all trials expecting data
and concatenate the results.
"""
return Data.from_multiple_data(
[
self.fetch_trial_data(trial, **kwargs)
if trial.status.expecting_data
else Data()
for trial in experiment.trials.values()
]
)
[docs] @classmethod
def fetch_trial_data_multi(
cls,
trial: "core.base_trial.BaseTrial",
metrics: Iterable["Metric"],
**kwargs: Any,
) -> Data:
"""Fetch multiple metrics data for one trial.
Default behavior calls `fetch_trial_data` for each metric.
Subclasses should override this to trial data computation for multiple metrics.
"""
return Data.from_multiple_data(
[metric.fetch_trial_data(trial, **kwargs) for metric in metrics]
)
[docs] @classmethod
def fetch_experiment_data_multi(
cls,
experiment: "core.experiment.Experiment",
metrics: Iterable["Metric"],
**kwargs: Any,
) -> Data:
"""Fetch multiple metrics data for an experiment.
Default behavior calls `fetch_trial_data_multi` for each trial.
Subclasses should override to batch data computation across trials + metrics.
"""
return Data.from_multiple_data(
[
cls.fetch_trial_data_multi(trial, metrics, **kwargs)
if trial.status.expecting_data
else Data()
for trial in experiment.trials.values()
]
)
[docs] def clone(self) -> "Metric":
"""Create a copy of this Metric."""
return Metric(name=self.name, lower_is_better=self.lower_is_better)
def __repr__(self) -> str:
return "{class_name}('{metric_name}')".format(
class_name=self.__class__.__name__, metric_name=self.name
)