#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import math
import pandas as pd
import plotly.graph_objs as go
from ax.core.data import Data
from ax.core.experiment import Experiment
from ax.modelbridge.factory import get_empirical_bayes_thompson, get_thompson
from ax.plot.base import AxPlotConfig, AxPlotTypes, PlotMetric, Z
from ax.plot.helper import get_plot_data
from ax.plot.scatter import _error_scatter_data
COLOR_SCALE = ["#ff3333", "#ff6666", "#ffffff", "#99ff99", "#33ff33"]
[docs]def get_color(x: float, ci: float, rel: bool, reverse: bool):
"""Determine the color of the table cell."""
if not rel:
# Color coding is meant to be relative to the status quo,
# and thus doesn't make sense if rel = False
return "#ffffff"
r = min(math.floor(abs(x) / ci), 2) if ci > 0 else 2
index = int(2 + r * math.copysign(1, x))
color_scale = list(COLOR_SCALE)
if reverse:
color_scale = list(reversed(color_scale))
return color_scale[index]
[docs]def table_view_plot(
experiment: Experiment,
data: Data,
use_empirical_bayes: bool = True,
only_data_frame: bool = False,
):
"""Table of means and confidence intervals.
Table is of the form:
+-------+------------+-----------+
| arm | metric_1 | metric_2 |
+=======+============+===========+
| 0_0 | mean +- CI | ... |
+-------+------------+-----------+
| 0_1 | ... | ... |
+-------+------------+-----------+
"""
model_func = get_empirical_bayes_thompson if use_empirical_bayes else get_thompson
model = model_func(experiment=experiment, data=data)
metric_name_to_lower_is_better = {
metric.name: metric.lower_is_better for metric in experiment.metrics.values()
}
plot_data, _, _ = get_plot_data(
model=model, generator_runs_dict={}, metric_names=model.metric_names
)
if plot_data.status_quo_name:
status_quo_arm = plot_data.in_sample.get(plot_data.status_quo_name)
rel = True
else:
status_quo_arm = None
rel = False
results = {}
records_with_mean = []
records_with_ci = []
for metric_name in model.metric_names:
arms, _, ys, ys_se = _error_scatter_data(
arms=list(plot_data.in_sample.values()),
y_axis_var=PlotMetric(metric_name, True),
x_axis_var=None,
rel=rel,
status_quo_arm=status_quo_arm,
)
# results[metric] will hold a list of tuples, one tuple per arm
tuples = list(zip(arms, ys, ys_se))
results[metric_name] = tuples
# used if only_data_frame == True
records_with_mean.append({arm: y for (arm, y, _) in tuples})
records_with_ci.append({arm: y_se for (arm, _, y_se) in tuples})
if only_data_frame:
return tuple(
pd.DataFrame.from_records(records, index=model.metric_names).transpose()
for records in [records_with_mean, records_with_ci]
)
# cells and colors are both lists of lists
# each top-level list corresponds to a column,
# so the first is a list of arms
cells = [[f"<b>{x}</b>" for x in arms]]
colors = [["#ffffff"] * len(arms)]
metric_names = []
for metric_name, list_of_tuples in sorted(results.items()):
cells.append(
[
"{:.3f} ± {:.3f}".format(y, Z * y_se)
for (_, y, y_se) in list_of_tuples
]
)
metric_names.append(metric_name.replace(":", " : "))
color_vec = []
for (_, y, y_se) in list_of_tuples:
color_vec.append(
get_color(
x=y,
ci=Z * y_se,
rel=rel,
reverse=metric_name_to_lower_is_better[metric_name],
)
)
colors.append(color_vec)
header = ["arms"] + metric_names
header = [f"<b>{x}</b>" for x in header]
trace = go.Table(
header={"values": header, "align": ["left"]},
cells={"values": cells, "align": ["left"], "fill": {"color": colors}},
)
layout = go.Layout(
height=min([400, len(arms) * 20 + 200]),
width=175 * len(header),
margin=go.Margin(l=0, r=20, b=20, t=20, pad=4), # noqa E741
)
fig = go.Figure(data=[trace], layout=layout)
return AxPlotConfig(data=fig, plot_type=AxPlotTypes.GENERIC)