ax.utils

Common

Docutils

Support functions for sphinx et. al

ax.utils.common.docutils.copy_doc(src: Callable[[...], Any]) → Callable[[_T], _T][source]

A decorator that copies the docstring of another object

Since sphinx actually loads the python modules to grab the docstrings this works with both sphinx and the help function.

class Cat(Mamal):

  @property
  @copy_doc(Mamal.is_feline)
  def is_feline(self) -> true:
      ...

Equality

ax.utils.common.equality.dataframe_equals(df1: pandas.DataFrame, df2: pandas.DataFrame) → bool[source]

Compare equality of two pandas dataframes.

ax.utils.common.equality.datetime_equals(dt1: Optional[datetime.datetime], dt2: Optional[datetime.datetime]) → bool[source]

Compare equality of two datetimes, ignoring microseconds.

ax.utils.common.equality.equality_typechecker(eq_func: Callable) → Callable[source]

A decorator to wrap all __eq__ methods to ensure that the inputs are of the right type.

ax.utils.common.equality.object_attribute_dicts_equal(one_dict: Dict[str, Any], other_dict: Dict[str, Any]) → bool[source]

Utility to check if all items in attribute dicts of two Ax objects are the same.

NOTE: Special-cases some Ax object attributes, like “_experiment” or “_model”, where full equality is hard to check.

ax.utils.common.equality.object_attribute_dicts_find_unequal_fields(one_dict: Dict[str, Any], other_dict: Dict[str, Any], fast_return: bool = True) → Tuple[Dict[str, Tuple[Any, Any]], Dict[str, Tuple[Any, Any]]][source]

Utility for finding out what attributes of two objects’ attribute dicts are unequal.

Parameters
  • one_dict – First object’s attribute dict (obj.__dict__).

  • other_dict – Second object’s attribute dict (obj.__dict__).

  • fast_return – Boolean representing whether to return as soon as a single unequal attribute was found or to iterate over all attributes and collect all unequal ones.

Returns

  • attribute name to attribute values of unequal type (as a tuple),

  • attribute name to attribute values of unequal value (as a tuple).

Return type

Two dictionaries

ax.utils.common.equality.same_elements(list1: List[Any], list2: List[Any]) → bool[source]

Compare equality of two lists of core Ax objects.

Assumptions:

– The contents of each list are types that implement __eq__ – The lists do not contain duplicates

Checking equality is then the same as checking that the lists are the same length, and that one is a subset of the other.

Kwargs

ax.utils.common.kwargs.consolidate_kwargs(kwargs_iterable: Iterable[Optional[Dict[str, Any]]], keywords: Iterable[str]) → Dict[str, Any][source]

Combine an iterable of kwargs into a single dict of kwargs, where kwargs by duplicate keys that appear later in the iterable get priority over the ones that appear earlier and only kwargs referenced in keywords will be used. This allows to combine somewhat redundant sets of kwargs, where a user-set kwarg, for instance, needs to override a default kwarg.

>>> consolidate_kwargs(
...     kwargs_iterable=[{'a': 1, 'b': 2}, {'b': 3, 'c': 4, 'd': 5}],
...     keywords=['a', 'b', 'd']
... )
{'a': 1, 'b': 3, 'd': 5}
ax.utils.common.kwargs.get_function_argument_names(function: Callable, omit: Optional[List[str]] = None) → List[str][source]

Extract parameter names from function signature.

ax.utils.common.kwargs.get_function_default_arguments(function: Callable) → Dict[str, Any][source]

Extract default arguments from function signature.

ax.utils.common.kwargs.validate_kwarg_typing(typed_callables: List[Callable], **kwargs: Any) → None[source]

Check if keywords in kwargs exist in any of the typed_callables and if the type of each keyword value matches the type of corresponding arg in one of the callables

Note: this function expects the typed callables to have unique keywords for the arguments and will raise an error if repeat keywords are found.

Logger

class ax.utils.common.logger.AxOutputNameFilter(name='')[source]

Bases: logging.Filter

This is a filter which sets the record’s output_name, if not configured

filter(record: logging.LogRecord) → bool[source]

Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for yes. If deemed appropriate, the record may be modified in-place.

ax.utils.common.logger.build_file_handler(filepath: str, level: int = 20) → logging.StreamHandler[source]

Build a file handle that logs entries to the given file, using the same formatting as the stream handler.

Parameters
  • filepath – Location of the file to log output to. If the file exists, output will be appended. If it does not exist, a new file will be created.

  • level – The log level. By default, sets level to INFO

Returns

A logging.FileHandler instance

ax.utils.common.logger.build_stream_handler(level: int = 20) → logging.StreamHandler[source]

Build the default stream handler used for most Ax logging. Sets default level to INFO, instead of WARNING.

Parameters

level – The log level. By default, sets level to INFO

Returns

A logging.StreamHandler instance

ax.utils.common.logger.get_logger(name: str) → logging.Logger[source]

Get an Axlogger.

To set a human-readable “output_name” that appears in logger outputs, add {“output_name”: “[MY_OUTPUT_NAME]”} to the logger’s contextual information. By default, we use the logger’s name

Parameters

name – The name of the logger.

Returns

The logging.Logger object.

ax.utils.common.logger.get_root_logger() → logging.Logger[source]
ax.utils.common.logger.init_loggers() → None[source]

Sets up Ax’s root logger to not propogate to Python’s root logger and use the default stream handler.

Serialization

ax.utils.common.serialization.callable_from_reference(path: str) → Callable[source]

Retrieves a callable by its path.

ax.utils.common.serialization.callable_to_reference(callable: Callable) → str[source]

Obtains path to the callable of form <module>.<name>.

ax.utils.common.serialization.extract_init_args(args: Dict[str, Any], class_: Type) → Dict[str, Any][source]

Given a dictionary, extract the arguments required for the given class’s constructor.

ax.utils.common.serialization.named_tuple_to_dict(data: Any) → Any[source]

Recursively convert NamedTuples to dictionaries.

ax.utils.common.serialization.serialize_init_args(object: Any, exclude_fields: Optional[List[str]] = None) → Dict[str, Any][source]

Given an object, return a dictionary of the arguments that are needed by its constructor.

Testutils

Support functions for tests

class ax.utils.common.testutils.TestCase(methodName: str = 'runTest')[source]

Bases: unittest.case.TestCase

The base Ax test case, contains various helper functions to write unittests.

assertEqual(first: Any, second: Any, msg: Optional[str] = None) → None[source]

Fail if the two objects are unequal as determined by the ‘==’ operator.

assertRaisesOn(exc: Type[Exception], line: Optional[str] = None, regex: Optional[str] = None) → AbstractContextManager[None][source]

Assert that an exception is raised on a specific line.

static silence_stderr() → Generator[None, None, None][source]

A context manager that silences stderr for part of a test.

If any exception passes through this context manager the stderr will be printed, otherwise it will be discarded.

Timeutils

ax.utils.common.timeutils.current_timestamp_in_millis() → int[source]

Grab current timestamp in milliseconds as an int.

ax.utils.common.timeutils.timestamps_in_range(start: datetime.datetime, end: datetime.datetime, delta: datetime.timedelta) → Generator[datetime.datetime, None, None][source]

Generator of timestamps in range [start, end], at intervals delta.

ax.utils.common.timeutils.to_ds(ts: datetime.datetime) → str[source]

Convert a datetime to a DS string.

ax.utils.common.timeutils.to_ts(ds: str) → datetime.datetime[source]

Convert a DS string to a datetime.

Typeutils

ax.utils.common.typeutils.checked_cast(typ: Type[T], val: V) → T[source]

Cast a value to a type (with a runtime safety check).

Returns the value unchanged and checks its type at runtime. This signals to the typechecker that the value has the designated type.

Like typing.cast check_cast performs no runtime conversion on its argument, but, unlike typing.cast, checked_cast will throw an error if the value is not of the expected type. The type passed as an argument should be a python class.

Parameters
  • typ – the type to cast to

  • val – the value that we are casting

Returns

the val argument, unchanged

ax.utils.common.typeutils.checked_cast_dict(key_typ: Type[K], value_typ: Type[V], d: Dict[X, Y]) → Dict[K, V][source]

Calls checked_cast on all keys and values in the dictionary.

ax.utils.common.typeutils.checked_cast_list(typ: Type[T], old_l: List[V]) → List[T][source]

Calls checked_cast on all items in a list.

ax.utils.common.typeutils.checked_cast_optional(typ: Type[T], val: Optional[V]) → Optional[T][source]

Calls checked_cast only if value is not None.

ax.utils.common.typeutils.checked_cast_to_tuple(typ: Tuple[Type[V], ...], val: V) → T[source]

Cast a value to a union of multiple types (with a runtime safety check). This function is similar to checked_cast, but allows for the type to be defined as a tuple of types, in which case the value is cast as a union of the types in the tuple.

Parameters
  • typ – the tuple of types to cast to

  • val – the value that we are casting

Returns

the val argument, unchanged

ax.utils.common.typeutils.not_none(val: Optional[T]) → T[source]

Unbox an optional type.

Parameters

val – the value to cast to a non None type

Returns

val when val is not None

Return type

V

Throws:

ValueError if val is None

ax.utils.common.typeutils.numpy_type_to_python_type(value: Any) → Any[source]

If value is a Numpy int or float, coerce to a Python int or float. This is necessary because some of our transforms return Numpy values.

ax.utils.common.typeutils.torch_type_from_str(identifier: str, type_name: str) → Union[torch.dtype, torch.device][source]
ax.utils.common.typeutils.torch_type_to_str(value: Any) → str[source]

Converts torch types, commonly used in Ax, to string representations.

Measurement

Synthetic Functions

class ax.utils.measurement.synthetic_functions.Aug_Branin[source]

Bases: ax.utils.measurement.synthetic_functions.SyntheticFunction

Augmented Branin function (3-dimensional with infinitely many global minima).

class ax.utils.measurement.synthetic_functions.Aug_Hartmann6[source]

Bases: ax.utils.measurement.synthetic_functions.Hartmann6

Augmented Hartmann6 function (7-dimensional with 1 global minimum).

class ax.utils.measurement.synthetic_functions.Branin[source]

Bases: ax.utils.measurement.synthetic_functions.SyntheticFunction

Branin function (2-dimensional with 3 global minima).

class ax.utils.measurement.synthetic_functions.FromBotorch(botorch_synthetic_function: botorch.test_functions.synthetic.SyntheticTestFunction)[source]

Bases: ax.utils.measurement.synthetic_functions.SyntheticFunction

property name
class ax.utils.measurement.synthetic_functions.Hartmann6[source]

Bases: ax.utils.measurement.synthetic_functions.SyntheticFunction

Hartmann6 function (6-dimensional with 1 global minimum).

class ax.utils.measurement.synthetic_functions.SyntheticFunction[source]

Bases: abc.ABC

property domain
f(X: numpy.ndarray) → Union[float, numpy.ndarray][source]

Synthetic function implementation.

Parameters

X (numpy.ndarray) – an n by d array, where n represents the number of observations and d is the dimensionality of the inputs.

Returns

an n-dimensional array.

Return type

numpy.ndarray

property fmax
property fmin
property maximums
property minimums
property name
property required_dimensionality
ax.utils.measurement.synthetic_functions.from_botorch(botorch_synthetic_function: botorch.test_functions.synthetic.SyntheticTestFunction) → ax.utils.measurement.synthetic_functions.SyntheticFunction[source]

Utility to generate Ax synthetic functions from BoTorch synthetic functions.

ax.utils.measurement.synthetic_functions.informative_failure_on_none(func: Callable) → Any[source]

Notebook

Plotting

ax.utils.notebook.plotting.init_notebook_plotting(offline=False)[source]

Initialize plotting in notebooks, either in online or offline mode.

ax.utils.notebook.plotting.render(plot_config: ax.plot.base.AxPlotConfig, inject_helpers=False) → None[source]

Render plot config.

Report

Render

ax.utils.report.render.h2_html(text: str) → str[source]

Embed text in subheading tag.

ax.utils.report.render.h3_html(text: str) → str[source]

Embed text in subsubheading tag.

Embed text and reference address into link tag.

ax.utils.report.render.list_item_html(text: str) → str[source]

Embed text in list element tag.

ax.utils.report.render.p_html(text: str) → str[source]

Embed text in paragraph tag.

ax.utils.report.render.render_report_elements(experiment_name: str, html_elements: List[str], header: bool = True, offline: bool = False, notebook_env: bool = False) → str[source]

Generate Ax HTML report for a given experiment from HTML elements.

Uses Jinja2 for template. Injects Plotly JS for graph rendering.

Example:

html_elements = [
    h2_html("Subsection with plot"),
    p_html("This is an example paragraph."),
    plot_html(plot_fitted(gp_model, 'perf_metric')),
    h2_html("Subsection with table"),
    pandas_html(data.df),
]
html = render_report_elements('My experiment', html_elements)
Parameters
  • experiment_name – the name of the experiment to use for title.

  • html_elements – list of HTML strings to render in report body.

  • header – if True, render experiment title as a header. Meant to be used for standalone reports (e.g. via email), as opposed to served on the front-end.

  • offline – if True, entire Plotly library is bundled with report.

  • notebook_env – if True, caps the report width to 700px for viewing in a notebook environment.

Returns

HTML string.

Return type

str

ax.utils.report.render.table_cell_html(text: str, width: Optional[str] = None) → str[source]

Embed text or an HTML element into table cell tag.

ax.utils.report.render.table_heading_cell_html(text: str) → str[source]

Embed text or an HTML element into table heading cell tag.

ax.utils.report.render.table_html(table_rows: List[str]) → str[source]

Embed list of HTML elements into table tag.

ax.utils.report.render.table_row_html(table_cells: List[str]) → str[source]

Embed list of HTML elements into table row tag.

ax.utils.report.render.unordered_list_html(list_items: List[str]) → str[source]

Embed list of html elements into an unordered list tag.

Stats

Statstools

ax.utils.stats.statstools.agresti_coull_sem(n_numer: Union[pandas.Series, numpy.ndarray, int], n_denom: Union[pandas.Series, numpy.ndarray, int], prior_successes: int = 2, prior_failures: int = 2) → Union[numpy.ndarray, float][source]

Compute the Agresti-Coull style standard error for a binomial proportion.

Reference: Agresti, Alan, and Brent A. Coull. Approximate Is Better than ‘Exact’ for Interval Estimation of Binomial Proportions.” The American Statistician, vol. 52, no. 2, 1998, pp. 119-126. JSTOR, www.jstor.org/stable/2685469.

ax.utils.stats.statstools.inverse_variance_weight(means: numpy.ndarray, variances: numpy.ndarray, conflicting_noiseless: str = 'warn') → Tuple[float, float][source]

Perform inverse variance weighting.

Parameters
  • means – The means of the observations.

  • variances – The variances of the observations.

  • conflicting_noiseless – How to handle the case of multiple observations with zero variance but different means. Options are “warn” (default), “ignore” or “raise”.

ax.utils.stats.statstools.marginal_effects(df: pandas.DataFrame) → pandas.DataFrame[source]

This method calculates the relative (in %) change in the outcome achieved by using any individual factor level versus randomizing across all factor levels. It does this by estimating a baseline under the experiment by marginalizing over all factors/levels. For each factor level, then, it conditions on that level for the individual factor and then marginalizes over all levels for all other factors.

Parameters

df – Dataframe containing columns named mean and sem. All other columns are assumed to be factors for which to calculate marginal effects.

Returns

A dataframe containing columns “Name”, “Level”, “Beta” and “SE”

corresponding to the factor, level, effect and standard error. Results are relativized as percentage changes.

ax.utils.stats.statstools.positive_part_james_stein(means: Union[numpy.ndarray, List[float]], sems: Union[numpy.ndarray, List[float]]) → Tuple[numpy.ndarray, numpy.ndarray][source]

Estimation method for Positive-part James-Stein estimator.

This method takes a vector of K means (y_i) and standard errors (sigma_i) and calculates the positive-part James Stein estimator.

Resulting estimates are the shrunk means and standard errors. The positive part James-Stein estimator shrinks each constituent average to the grand average:

y_i - phi_i * y_i + phi_i * ybar

The variable phi_i determines the amount of shrinkage. For phi_i = 1, mu_hat is equal to ybar (the mean of all y_i), while for phi_i = 0, mu_hat is equal to y_i. It can be shown that restricting phi_i <= 1 dominates the unrestricted estimator, so this method restricts phi_i in this manner. The amount of shrinkage, phi_i, is determined by:

(K - 3) * sigma2_i / s2

That is, less shrinkage is applied when individual means are estimated with greater precision, and more shrinkage is applied when individual means are very tightly clustered together. We also restrict phi_i to never be larger than 1.

The variance of the mean estimator is:

(1 - phi_i) * sigma2_i + phi * sigma2_i / K + 2 * phi_i ** 2 * (y_i - ybar)^2 / (K - 3)

The first term is the variance component from y_i, the second term is the contribution from the mean of all y_i, and the third term is the contribution from the uncertainty in the sum of squared deviations of y_i from the mean of all y_i.

For more information, see https://fburl.com/empirical_bayes.

Parameters
  • means – Means of each arm

  • sems – Standard errors of each arm

Returns

Empirical Bayes estimate of each arm’s mean sem_i: Empirical Bayes estimate of each arm’s sem

Return type

mu_hat_i

ax.utils.stats.statstools.relativize(means_t: Union[numpy.ndarray, List[float], float], sems_t: Union[numpy.ndarray, List[float], float], mean_c: float, sem_c: float, bias_correction: bool = True, cov_means: Union[numpy.ndarray, List[float], float] = 0.0, as_percent: bool = False) → Tuple[numpy.ndarray, numpy.ndarray][source]

Ratio estimator based on the delta method.

This uses the delta method (i.e. a Taylor series approximation) to estimate the mean and standard deviation of the sampling distribution of the ratio between test and control – that is, the sampling distribution of an estimator of the true population value under the assumption that the means in test and control have a known covariance:

(mu_t / mu_c) - 1.

Under a second-order Taylor expansion, the sampling distribution of the relative change in empirical means, which is m_t / m_c - 1, is approximately normally distributed with mean

[(mu_t - mu_c) / mu_c] - [(sigma_c)^2 * mu_t] / (mu_c)^3

and variance

(sigma_t / mu_c)^2 - 2 * mu_t _ sigma_tc / mu_c^3 + [(sigma_c * mu_t)^2 / (mu_c)^4]

as the higher terms are assumed to be close to zero in the full Taylor series. To estimate these parameters, we plug in the empirical means and standard errors. This gives us the estimators:

[(m_t - m_c) / m_c] - [(s_c)^2 * m_t] / (m_c)^3

and

(s_t / m_c)^2 - 2 * m_t * s_tc / m_c^3 + [(s_c * m_t)^2 / (m_c)^4]

Note that the delta method does NOT take as input the empirical standard deviation of a metric, but rather the standard error of the mean of that metric – that is, the standard deviation of the metric after division by the square root of the total number of observations.

Parameters
  • means_t – Sample means (test)

  • sems_t – Sample standard errors of the means (test)

  • mean_c – Sample mean (control)

  • sem_c – Sample standard error of the mean (control)

  • cov_means – Sample covariance between test and control

  • as_percent – If true, return results in percent (* 100)

Returns

Inferred means of the sampling distribution of

the relative change (mean_t / mean_c) - 1

sem_hat: Inferred standard deviation of the sampling

distribution of rel_hat – i.e. the standard error.

Return type

rel_hat

ax.utils.stats.statstools.relativize_data(data: ax.core.data.Data, status_quo_name: str = 'status_quo', as_percent: bool = False, include_sq: bool = False) → ax.core.data.Data[source]

Relativize a data object w.r.t. a status_quo arm.

Parameters
  • data – The data object to be relativized.

  • status_quo_name – The name of the status_quo arm.

  • as_percent – If True, return results as percentage change.

  • include_sq – Include status quo in final df.

Returns

The new data object with the relativized metrics (excluding the

status_quo arm)

ax.utils.stats.statstools.total_variance(means: numpy.ndarray, variances: numpy.ndarray, sample_sizes: numpy.ndarray) → float[source]

Compute total variance.

Testing

Core Stubs

ax.utils.testing.core_stubs.get_abandoned_arm() → ax.core.batch_trial.AbandonedArm[source]
ax.utils.testing.core_stubs.get_acquisition_function_type() → Type[botorch.acquisition.acquisition.AcquisitionFunction][source]
ax.utils.testing.core_stubs.get_acquisition_type() → Type[ax.models.torch.botorch_modular.acquisition.Acquisition][source]
ax.utils.testing.core_stubs.get_arm() → ax.core.arm.Arm[source]
ax.utils.testing.core_stubs.get_arm_weights1() → MutableMapping[ax.core.arm.Arm, float][source]
ax.utils.testing.core_stubs.get_arm_weights2() → MutableMapping[ax.core.arm.Arm, float][source]
ax.utils.testing.core_stubs.get_arms() → List[ax.core.arm.Arm][source]
ax.utils.testing.core_stubs.get_arms_from_dict(arm_weights_dict: MutableMapping[ax.core.arm.Arm, float]) → List[ax.core.arm.Arm][source]
ax.utils.testing.core_stubs.get_augmented_branin_metric(name='aug_branin') → ax.metrics.branin.AugmentedBraninMetric[source]
ax.utils.testing.core_stubs.get_augmented_branin_objective() → ax.core.objective.Objective[source]
ax.utils.testing.core_stubs.get_augmented_branin_optimization_config() → ax.core.optimization_config.OptimizationConfig[source]
ax.utils.testing.core_stubs.get_augmented_hartmann_metric(name='aug_hartmann') → ax.metrics.hartmann6.AugmentedHartmann6Metric[source]
ax.utils.testing.core_stubs.get_augmented_hartmann_objective() → ax.core.objective.Objective[source]
ax.utils.testing.core_stubs.get_augmented_hartmann_optimization_config() → ax.core.optimization_config.OptimizationConfig[source]
ax.utils.testing.core_stubs.get_batch_trial(abandon_arm: bool = True) → ax.core.batch_trial.BatchTrial[source]
ax.utils.testing.core_stubs.get_batch_trial_with_repeated_arms(num_repeated_arms: int) → ax.core.batch_trial.BatchTrial[source]

Create a batch that contains both new arms and N arms from the last existed trial in the experiment. Where N is equal to the input argument ‘num_repeated_arms’.

ax.utils.testing.core_stubs.get_botorch_model() → ax.models.torch.botorch_modular.model.BoTorchModel[source]
ax.utils.testing.core_stubs.get_botorch_model_with_default_acquisition_class() → ax.models.torch.botorch_modular.model.BoTorchModel[source]
ax.utils.testing.core_stubs.get_branin_arms(n: int, seed: int) → List[ax.core.arm.Arm][source]
ax.utils.testing.core_stubs.get_branin_data(trial_indices: Optional[Iterable[int]] = None) → ax.core.data.Data[source]
ax.utils.testing.core_stubs.get_branin_data_batch(batch: ax.core.batch_trial.BatchTrial) → ax.core.data.Data[source]
ax.utils.testing.core_stubs.get_branin_data_multi_objective(trial_indices: Optional[Iterable[int]] = None) → ax.core.data.Data[source]
ax.utils.testing.core_stubs.get_branin_experiment(has_optimization_config: bool = True, with_batch: bool = False, with_status_quo: bool = False, with_fidelity_parameter: bool = False, with_choice_parameter: bool = False, search_space: Optional[ax.core.search_space.SearchSpace] = None) → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_branin_experiment_with_multi_objective(has_optimization_config: bool = True, with_batch: bool = False, with_status_quo: bool = False, with_fidelity_parameter: bool = False) → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_branin_metric(name='branin') → ax.metrics.branin.BraninMetric[source]
ax.utils.testing.core_stubs.get_branin_multi_objective() → ax.core.objective.Objective[source]
ax.utils.testing.core_stubs.get_branin_multi_objective_optimization_config() → ax.core.optimization_config.OptimizationConfig[source]
ax.utils.testing.core_stubs.get_branin_objective() → ax.core.objective.Objective[source]
ax.utils.testing.core_stubs.get_branin_optimization_config() → ax.core.optimization_config.OptimizationConfig[source]
ax.utils.testing.core_stubs.get_branin_outcome_constraint() → ax.core.outcome_constraint.OutcomeConstraint[source]
ax.utils.testing.core_stubs.get_branin_search_space(with_fidelity_parameter: bool = False, with_choice_parameter: bool = False) → ax.core.search_space.SearchSpace[source]
ax.utils.testing.core_stubs.get_choice_parameter() → ax.core.parameter.ChoiceParameter[source]
ax.utils.testing.core_stubs.get_data(trial_index: int = 0) → ax.core.data.Data[source]
ax.utils.testing.core_stubs.get_discrete_search_space() → ax.core.search_space.SearchSpace[source]
ax.utils.testing.core_stubs.get_experiment() → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_experiment_with_batch_and_single_trial() → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_experiment_with_batch_trial() → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_experiment_with_data() → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_experiment_with_multi_objective() → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_experiment_with_repeated_arms(num_repeated_arms: int) → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_experiment_with_scalarized_objective() → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_experiment_with_trial_with_ttl() → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_factorial_experiment(has_optimization_config: bool = True, with_batch: bool = False, with_status_quo: bool = False) → ax.core.experiment.Experiment[source]
ax.utils.testing.core_stubs.get_factorial_metric(name: str = 'success_metric') → ax.metrics.factorial.FactorialMetric[source]
ax.utils.testing.core_stubs.get_factorial_search_space() → ax.core.search_space.SearchSpace[source]
ax.utils.testing.core_stubs.get_fixed_parameter() → ax.core.parameter.FixedParameter[source]
ax.utils.testing.core_stubs.get_generator_run() → ax.core.generator_run.GeneratorRun[source]
ax.utils.testing.core_stubs.get_generator_run2() → ax.core.generator_run.GeneratorRun[source]
ax.utils.testing.core_stubs.get_hartmann_metric(name='hartmann') → ax.metrics.hartmann6.Hartmann6Metric[source]
ax.utils.testing.core_stubs.get_hartmann_objective() → ax.core.objective.Objective[source]
ax.utils.testing.core_stubs.get_hartmann_optimization_config() → ax.core.optimization_config.OptimizationConfig[source]
ax.utils.testing.core_stubs.get_hartmann_search_space(with_fidelity_parameter: bool = False) → ax.core.search_space.SearchSpace[source]
ax.utils.testing.core_stubs.get_list_surrogate() → ax.models.torch.botorch_modular.surrogate.Surrogate[source]
ax.utils.testing.core_stubs.get_metric() → ax.core.metric.Metric[source]
ax.utils.testing.core_stubs.get_mll_type() → Type[gpytorch.mlls.marginal_log_likelihood.MarginalLogLikelihood][source]
ax.utils.testing.core_stubs.get_model_covariance() → Dict[str, Dict[str, List[float]]][source]
ax.utils.testing.core_stubs.get_model_mean() → Dict[str, List[float]][source]
ax.utils.testing.core_stubs.get_model_predictions() → Tuple[Dict[str, List[float]], Dict[str, Dict[str, List[float]]]][source]
ax.utils.testing.core_stubs.get_model_predictions_per_arm() → Dict[str, Tuple[Dict[str, float], Optional[Dict[str, Dict[str, float]]]]][source]
ax.utils.testing.core_stubs.get_model_type() → Type[botorch.models.model.Model][source]
ax.utils.testing.core_stubs.get_multi_objective() → ax.core.objective.Objective[source]
ax.utils.testing.core_stubs.get_multi_objective_optimization_config() → ax.core.optimization_config.OptimizationConfig[source]
ax.utils.testing.core_stubs.get_multi_type_experiment(add_trial_type: bool = True, add_trials: bool = False) → ax.core.multi_type_experiment.MultiTypeExperiment[source]
ax.utils.testing.core_stubs.get_objective() → ax.core.objective.Objective[source]
ax.utils.testing.core_stubs.get_objective_threshold() → ax.core.outcome_constraint.ObjectiveThreshold[source]
ax.utils.testing.core_stubs.get_optimization_config() → ax.core.optimization_config.OptimizationConfig[source]
ax.utils.testing.core_stubs.get_optimization_config_no_constraints() → ax.core.optimization_config.OptimizationConfig[source]
ax.utils.testing.core_stubs.get_order_constraint() → ax.core.parameter_constraint.OrderConstraint[source]
ax.utils.testing.core_stubs.get_outcome_constraint() → ax.core.outcome_constraint.OutcomeConstraint[source]
ax.utils.testing.core_stubs.get_parameter_constraint() → ax.core.parameter_constraint.ParameterConstraint[source]
ax.utils.testing.core_stubs.get_range_parameter() → ax.core.parameter.RangeParameter[source]
ax.utils.testing.core_stubs.get_range_parameter2() → ax.core.parameter.RangeParameter[source]
ax.utils.testing.core_stubs.get_scalarized_objective() → ax.core.objective.Objective[source]
ax.utils.testing.core_stubs.get_search_space() → ax.core.search_space.SearchSpace[source]
ax.utils.testing.core_stubs.get_search_space_for_range_value(min: float = 3.0, max: float = 6.0) → ax.core.search_space.SearchSpace[source]
ax.utils.testing.core_stubs.get_search_space_for_range_values(min: float = 3.0, max: float = 6.0) → ax.core.search_space.SearchSpace[source]
ax.utils.testing.core_stubs.get_search_space_for_value(val: float = 3.0) → ax.core.search_space.SearchSpace[source]
ax.utils.testing.core_stubs.get_simple_experiment() → ax.core.simple_experiment.SimpleExperiment[source]
ax.utils.testing.core_stubs.get_simple_experiment_with_batch_trial() → ax.core.simple_experiment.SimpleExperiment[source]
ax.utils.testing.core_stubs.get_status_quo() → ax.core.arm.Arm[source]
ax.utils.testing.core_stubs.get_sum_constraint1() → ax.core.parameter_constraint.SumConstraint[source]
ax.utils.testing.core_stubs.get_sum_constraint2() → ax.core.parameter_constraint.SumConstraint[source]
ax.utils.testing.core_stubs.get_surrogate() → ax.models.torch.botorch_modular.surrogate.Surrogate[source]
ax.utils.testing.core_stubs.get_synthetic_runner() → ax.runners.synthetic.SyntheticRunner[source]
ax.utils.testing.core_stubs.get_trial() → ax.core.trial.Trial[source]
ax.utils.testing.core_stubs.get_weights() → List[float][source]
ax.utils.testing.core_stubs.get_weights_from_dict(arm_weights_dict: MutableMapping[ax.core.arm.Arm, float]) → List[float][source]

Modeling Stubs

ax.utils.testing.modeling_stubs.get_experiment_for_value() → ax.core.experiment.Experiment[source]
ax.utils.testing.modeling_stubs.get_generation_strategy(with_experiment: bool = False, with_callable_model_kwarg: bool = True) → ax.modelbridge.generation_strategy.GenerationStrategy[source]
ax.utils.testing.modeling_stubs.get_observation() → ax.core.observation.Observation[source]
ax.utils.testing.modeling_stubs.get_observation1() → ax.core.observation.Observation[source]
ax.utils.testing.modeling_stubs.get_observation1trans() → ax.core.observation.Observation[source]
ax.utils.testing.modeling_stubs.get_observation2() → ax.core.observation.Observation[source]
ax.utils.testing.modeling_stubs.get_observation2trans() → ax.core.observation.Observation[source]
ax.utils.testing.modeling_stubs.get_observation_features() → ax.core.observation.ObservationFeatures[source]
ax.utils.testing.modeling_stubs.get_observation_status_quo0() → ax.core.observation.Observation[source]
ax.utils.testing.modeling_stubs.get_observation_status_quo1() → ax.core.observation.Observation[source]
ax.utils.testing.modeling_stubs.get_transform_type() → Type[ax.modelbridge.transforms.base.Transform][source]
class ax.utils.testing.modeling_stubs.transform_1(search_space: Optional[ax.core.search_space.SearchSpace], observation_features: List[ax.core.observation.ObservationFeatures], observation_data: List[ax.core.observation.ObservationData], config: Optional[Dict[str, Union[int, float, str, botorch.acquisition.acquisition.AcquisitionFunction, Dict[str, Any]]]] = None)[source]

Bases: ax.modelbridge.transforms.base.Transform

config = None
transform_observation_data(observation_data: List[ax.core.observation.ObservationData], observation_features: List[ax.core.observation.ObservationFeatures]) → List[ax.core.observation.ObservationData][source]

Transform observation features.

This is typically done in-place. This class implements the identity transform (does nothing).

This takes in observation_features, so that data transforms can be conditional on features, but observation_features are notmutated.

Parameters
  • observation_data – Observation data

  • observation_features – Corresponding observation features

Returns: transformed observation data

transform_observation_features(observation_features: List[ax.core.observation.ObservationFeatures]) → List[ax.core.observation.ObservationFeatures][source]

Transform observation features.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters

observation_features – Observation features

Returns: transformed observation features

transform_optimization_config(optimization_config: ax.core.optimization_config.OptimizationConfig, modelbridge: Optional[ax.modelbridge.base.ModelBridge], fixed_features: ax.core.observation.ObservationFeatures) → ax.core.optimization_config.OptimizationConfig[source]

Transform optimization config.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters

optimization_config – The optimization config

Returns: transformed optimization config.

transform_search_space(search_space: ax.core.search_space.SearchSpace) → ax.core.search_space.SearchSpace[source]

Transform search space.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters

search_space – The search space

Returns: transformed search space.

untransform_observation_data(observation_data: List[ax.core.observation.ObservationData], observation_features: List[ax.core.observation.ObservationFeatures]) → List[ax.core.observation.ObservationData][source]

Untransform observation data.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters
  • observation_data – Observation data, in transformed space

  • observation_features – Corresponding observation features, in same space.

Returns: observation data in original space.

untransform_observation_features(observation_features: List[ax.core.observation.ObservationFeatures]) → List[ax.core.observation.ObservationFeatures][source]

Untransform observation features.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters

observation_features – Observation features in the transformed space

Returns: observation features in the original space

class ax.utils.testing.modeling_stubs.transform_2(search_space: Optional[ax.core.search_space.SearchSpace], observation_features: List[ax.core.observation.ObservationFeatures], observation_data: List[ax.core.observation.ObservationData], config: Optional[Dict[str, Union[int, float, str, botorch.acquisition.acquisition.AcquisitionFunction, Dict[str, Any]]]] = None)[source]

Bases: ax.modelbridge.transforms.base.Transform

config = None
transform_observation_data(observation_data: List[ax.core.observation.ObservationData], observation_features: List[ax.core.observation.ObservationFeatures]) → List[ax.core.observation.ObservationData][source]

Transform observation features.

This is typically done in-place. This class implements the identity transform (does nothing).

This takes in observation_features, so that data transforms can be conditional on features, but observation_features are notmutated.

Parameters
  • observation_data – Observation data

  • observation_features – Corresponding observation features

Returns: transformed observation data

transform_observation_features(observation_features: List[ax.core.observation.ObservationFeatures]) → List[ax.core.observation.ObservationFeatures][source]

Transform observation features.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters

observation_features – Observation features

Returns: transformed observation features

transform_optimization_config(optimization_config: ax.core.optimization_config.OptimizationConfig, modelbridge: Optional[ax.modelbridge.base.ModelBridge], fixed_features: ax.core.observation.ObservationFeatures) → ax.core.optimization_config.OptimizationConfig[source]

Transform optimization config.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters

optimization_config – The optimization config

Returns: transformed optimization config.

transform_search_space(search_space: ax.core.search_space.SearchSpace) → ax.core.search_space.SearchSpace[source]

Transform search space.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters

search_space – The search space

Returns: transformed search space.

untransform_observation_data(observation_data: List[ax.core.observation.ObservationData], observation_features: List[ax.core.observation.ObservationFeatures]) → List[ax.core.observation.ObservationData][source]

Untransform observation data.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters
  • observation_data – Observation data, in transformed space

  • observation_features – Corresponding observation features, in same space.

Returns: observation data in original space.

untransform_observation_features(observation_features: List[ax.core.observation.ObservationFeatures]) → List[ax.core.observation.ObservationFeatures][source]

Untransform observation features.

This is typically done in-place. This class implements the identity transform (does nothing).

Parameters

observation_features – Observation features in the transformed space

Returns: observation features in the original space

Tutorials

Neural Net

class ax.utils.tutorials.cnn_utils.CNN[source]

Bases: torch.nn.modules.module.Module

Convolutional Neural Network.

forward(x)[source]

Defines the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

training = None
ax.utils.tutorials.cnn_utils.evaluate(net: torch.nn.modules.module.Module, data_loader: torch.utils.data.dataloader.DataLoader, dtype: torch.dtype, device: torch.device) → float[source]

Compute classification accuracy on provided dataset.

Parameters
  • net – trained model

  • data_loader – DataLoader containing the evaluation set

  • dtype – torch dtype

  • device – torch device

Returns

classification accuracy

Return type

float

ax.utils.tutorials.cnn_utils.get_partition_data_loaders(train_valid_set: torch.utils.data.dataset.Dataset, test_set: torch.utils.data.dataset.Dataset, downsample_pct: float = 0.5, train_pct: float = 0.8, batch_size: int = 128, num_workers: int = 0, deterministic_partitions: bool = False, downsample_pct_test: Optional[float] = None) → Tuple[torch.utils.data.dataloader.DataLoader, torch.utils.data.dataloader.DataLoader, torch.utils.data.dataloader.DataLoader][source]
Helper function for partitioning training data into training and validation sets,

downsampling data, and initializing DataLoaders for each partition.

Parameters
  • train_valid_set – torch.dataset

  • downsample_pct – the proportion of the dataset to use for training, and validation

  • train_pct – the proportion of the downsampled data to use for training

  • batch_size – how many samples per batch to load

  • num_workers – number of workers (subprocesses) for loading data

  • deterministic_partitions – whether to partition data in a deterministic fashion

  • downsample_pct_test – the proportion of the dataset to use for test, default to be equal to downsample_pct

Returns

training data DataLoader: validation data DataLoader: test data

Return type

DataLoader

ax.utils.tutorials.cnn_utils.load_mnist(downsample_pct: float = 0.5, train_pct: float = 0.8, data_path: str = './data', batch_size: int = 128, num_workers: int = 0, deterministic_partitions: bool = False, downsample_pct_test: Optional[float] = None) → Tuple[torch.utils.data.dataloader.DataLoader, torch.utils.data.dataloader.DataLoader, torch.utils.data.dataloader.DataLoader][source]
Load MNIST dataset (download if necessary) and split data into training,

validation, and test sets.

Parameters
  • downsample_pct – the proportion of the dataset to use for training, validation, and test

  • train_pct – the proportion of the downsampled data to use for training

  • data_path – Root directory of dataset where MNIST/processed/training.pt and MNIST/processed/test.pt exist.

  • batch_size – how many samples per batch to load

  • num_workers – number of workers (subprocesses) for loading data

  • deterministic_partitions – whether to partition data in a deterministic fashion

  • downsample_pct_test – the proportion of the dataset to use for test, default to be equal to downsample_pct

Returns

training data DataLoader: validation data DataLoader: test data

Return type

DataLoader

ax.utils.tutorials.cnn_utils.split_dataset(dataset: torch.utils.data.dataset.Dataset, lengths: List[int], deterministic_partitions: bool = False) → List[torch.utils.data.dataset.Dataset][source]

Split a dataset either randomly or deterministically.

Parameters
  • dataset – the dataset to split

  • lengths – the lengths of each partition

  • deterministic_partitions – deterministic_partitions: whether to partition data in a deterministic fashion

Returns

split datasets

Return type

List[Dataset]

ax.utils.tutorials.cnn_utils.train(net: torch.nn.modules.module.Module, train_loader: torch.utils.data.dataloader.DataLoader, parameters: Dict[str, float], dtype: torch.dtype, device: torch.device) → torch.nn.modules.module.Module[source]

Train CNN on provided data set.

Parameters
  • net – initialized neural network

  • train_loader – DataLoader containing training set

  • parameters – dictionary containing parameters to be passed to the optimizer. - lr: default (0.001) - momentum: default (0.0) - weight_decay: default (0.0) - num_epochs: default (1)

  • dtype – torch dtype

  • device – torch device

Returns

trained CNN.

Return type

nn.Module