Source code for ax.models.discrete.thompson

#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import hashlib
import json
from typing import Dict, List, Optional, Tuple

import numpy as np
from ax.core.types import TConfig, TGenMetadata, TParamValue, TParamValueList
from ax.exceptions.constants import TS_MIN_WEIGHT_ERROR
from ax.exceptions.model import ModelError
from ax.models.discrete_base import DiscreteModel
from ax.utils.common.docutils import copy_doc


[docs]class ThompsonSampler(DiscreteModel): """Generator for Thompson sampling. The generator performs Thompson sampling on the data passed in via `fit`. Arms are given weight proportional to the probability that they are winners, according to Monte Carlo simulations. """ def __init__( self, num_samples: int = 10000, min_weight: Optional[float] = None, uniform_weights: bool = False, ) -> None: """ Args: num_samples: The number of samples to draw from the posterior. min_weight: The minimum weight a arm must be given in order for it to be returned from the gernerator. If not specified, will be set to 2 / (number of arms). uniform_weights: If True, the arms returned from the generator will each be given a weight of 1 / (number of arms). """ self.num_samples = num_samples self.min_weight = min_weight self.uniform_weights = uniform_weights self.X = None self.Ys = None self.Yvars = None self.X_to_Ys_and_Yvars = None # pyre-fixme[56]: While applying decorator # `ax.utils.common.docutils.copy_doc(...)`: Argument `Xs` expected.
[docs] @copy_doc(DiscreteModel.fit) def fit( self, Xs: List[List[TParamValueList]], Ys: List[List[float]], Yvars: List[List[float]], parameter_values: List[TParamValueList], outcome_names: List[str], ) -> None: self.X = self._fit_X(Xs=Xs) self.Ys, self.Yvars = self._fit_Ys_and_Yvars( Ys=Ys, Yvars=Yvars, outcome_names=outcome_names ) self.X_to_Ys_and_Yvars = self._fit_X_to_Ys_and_Yvars( X=self.X, Ys=self.Ys, Yvars=self.Yvars )
# pyre-fixme[56]: While applying decorator # `ax.utils.common.docutils.copy_doc(...)`: Argument `n` expected.
[docs] @copy_doc(DiscreteModel.gen) def gen( self, n: int, parameter_values: List[TParamValueList], objective_weights: Optional[np.ndarray], outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, fixed_features: Optional[Dict[int, TParamValue]] = None, pending_observations: Optional[List[List[TParamValueList]]] = None, model_gen_options: Optional[TConfig] = None, ) -> Tuple[List[TParamValueList], List[float], TGenMetadata]: if objective_weights is None: raise ValueError("ThompsonSampler requires objective weights.") arms = self.X k = len(arms) weights = self._generate_weights( objective_weights=objective_weights, outcome_constraints=outcome_constraints ) min_weight = self.min_weight if self.min_weight is not None else 2.0 / k # Second entry is used for tie-breaking weighted_arms = [ (weights[i], np.random.random(), arms[i]) for i in range(k) # pyre-fixme[58]: `>` is not supported for operand types `float` and # `Optional[float]`. if weights[i] > min_weight ] if len(weighted_arms) == 0: raise ModelError( TS_MIN_WEIGHT_ERROR.format( min_weight=min_weight, max_weight=max(weights) ) ) weighted_arms.sort(reverse=True) top_weighted_arms = weighted_arms[:n] if n > 0 else weighted_arms top_arms = [arm for _, _, arm in top_weighted_arms] top_weights = [weight for weight, _, _ in top_weighted_arms] if self.uniform_weights: top_weights = [1 / len(top_arms) for _ in top_arms] return top_arms, [x / sum(top_weights) for x in top_weights], {}
# pyre-fixme[56]: While applying decorator # `ax.utils.common.docutils.copy_doc(...)`: Argument `X` expected.
[docs] @copy_doc(DiscreteModel.predict) def predict(self, X: List[TParamValueList]) -> Tuple[np.ndarray, np.ndarray]: n = len(X) # number of parameterizations at which to make predictions m = len(self.Ys) # number of outcomes f = np.zeros((n, m)) # array of outcome predictions cov = np.zeros((n, m, m)) # array of predictive covariances predictX = [self._hash_TParamValueList(x) for x in X] for i, X_to_Y_and_Yvar in enumerate(self.X_to_Ys_and_Yvars): # iterate through outcomes for j, x in enumerate(predictX): # iterate through parameterizations at which to make predictions if x not in X_to_Y_and_Yvar: raise ValueError( "ThompsonSampler does not support out-of-sample prediction." ) f[j, i], cov[j, i, i] = X_to_Y_and_Yvar[x] return f, cov
def _generate_weights( self, objective_weights: np.ndarray, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]] = None, ) -> List[float]: samples, fraction_all_infeasible = self._produce_samples( num_samples=self.num_samples, objective_weights=objective_weights, outcome_constraints=outcome_constraints, ) if fraction_all_infeasible > 0.99: raise ValueError( "Less than 1% of samples have a feasible arm. " "Check your outcome constraints." ) num_valid_samples = samples.shape[1] while num_valid_samples < self.num_samples: num_additional_samples = (self.num_samples - num_valid_samples) / ( 1 - fraction_all_infeasible ) num_additional_samples = int(np.maximum(num_additional_samples, 100)) new_samples, _ = self._produce_samples( num_samples=num_additional_samples, objective_weights=objective_weights, outcome_constraints=outcome_constraints, ) samples = np.concatenate([samples, new_samples], axis=1) num_valid_samples = samples.shape[1] winner_indices = np.argmax(samples, axis=0) # (num_samples,) winner_counts = np.zeros(len(self.X)) # (k,) for index in winner_indices: winner_counts[index] += 1 weights = winner_counts / winner_counts.sum() return weights.tolist() def _produce_samples( self, num_samples: int, objective_weights: np.ndarray, outcome_constraints: Optional[Tuple[np.ndarray, np.ndarray]], ) -> Tuple[np.ndarray, float]: k = len(self.X) samples_per_metric = np.zeros( (k, num_samples, len(self.Ys)) ) # k x num_samples x m for i, Y in enumerate(self.Ys): # (k x 1) Yvar = self.Yvars[i] # (k x 1) cov = np.diag(Yvar) # (k x k) samples = np.random.multivariate_normal( Y, cov, num_samples ).T # (k x num_samples) samples_per_metric[:, :, i] = samples any_violation = np.zeros((k, num_samples), dtype=bool) # (k x num_samples) if outcome_constraints: # A is (num_constraints x m) # b is (num_constraints x 1) A, b = outcome_constraints # (k x num_samples x m) dot (num_constraints x m)^T # = (k x num_samples x m) dot (m x num_constraints) # ==> (k x num_samples x num_constraints) constraint_values = np.dot(samples_per_metric, A.T) violations = constraint_values > b.T any_violation = np.max(violations, axis=2) # (k x num_samples) objective_values = np.dot( samples_per_metric, objective_weights ) # (k x num_samples) objective_values[any_violation] = -np.Inf best_arm = objective_values.max(axis=0) # (num_samples,) all_arms_infeasible = best_arm == -np.Inf # (num_samples,) fraction_all_infeasible = all_arms_infeasible.mean() filtered_objective = objective_values[:, ~all_arms_infeasible] # (k x ?) return filtered_objective, fraction_all_infeasible def _validate_Xs(self, Xs: List[List[TParamValueList]]) -> None: """ 1. Require that all Xs have the same arms, i.e. we have observed all arms for all metrics. If so, we can safely use Xs[0] exclusively. 2. Require that all rows of X are unique, i.e. only one observation per parameterization. """ if not all(x == Xs[0] for x in Xs[1:]): raise ValueError( "ThompsonSampler requires that all elements of Xs are identical; " "i.e. that we have observed all arms for all metrics." ) X = Xs[0] uniqueX = {self._hash_TParamValueList(x) for x in X} if len(uniqueX) != len(X): raise ValueError( "ThompsonSampler requires all rows of X to be unique; " "i.e. that there is only one observation per parameterization." ) def _fit_X(self, Xs: List[List[TParamValueList]]) -> List[TParamValueList]: """After validation has been performed, it's safe to use Xs[0].""" self._validate_Xs(Xs=Xs) return Xs[0] def _fit_Ys_and_Yvars( self, Ys: List[List[float]], Yvars: List[List[float]], outcome_names: List[str] ) -> Tuple[List[List[float]], List[List[float]]]: """For plain Thompson Sampling, there's nothing to be done here. EmpiricalBayesThompsonSampler will overwrite this method to perform shrinkage. """ return Ys, Yvars def _fit_X_to_Ys_and_Yvars( self, X: List[TParamValueList], Ys: List[List[float]], Yvars: List[List[float]] ) -> List[Dict[TParamValueList, Tuple[float, float]]]: """Construct lists of mappings, one per outcome, of parameterizations to the a tuple of their mean and variance. """ X_to_Ys_and_Yvars = [] hashableX = [self._hash_TParamValueList(x) for x in X] for (Y, Yvar) in zip(Ys, Yvars): X_to_Ys_and_Yvars.append(dict(zip(hashableX, zip(Y, Yvar)))) return X_to_Ys_and_Yvars def _hash_TParamValueList(self, x: TParamValueList) -> str: """Hash a list of parameter values. This is safer than converting the list to a tuple because of int/floats. """ param_values_str = json.dumps(x) return hashlib.md5(param_values_str.encode("utf-8")).hexdigest()